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Abstract

Convolutional Neural Networks (CNNs) have shown their dominance in
solving image classification problems. However, the architectures of CNNs vary
in different image classification tasks, which makes the design of the architec-
tures become an active, but challenging research area.This project aims to use
Evolutionary Computation (EC) automatically evolve the architectures of CNNs,
where three contributions are achieved: Firstly, two EC methods - Differential
Evolution (DE) and Genetic Algorithm (GA) with an existing encoding strategy,
are developed; Secondly, a hybrid DE approach is proposed to break the major
limitation of the two aforementioned methods; Lastly, we propose a new hy-
brid two-level EC method to automatically evolve more advanced CNNs with
shortcut connections, which were invented last year in ResNet and DenseNet.
By comparing with the state-of-the-art algorithms, all of the proposed methods
are capable to achieve competitive or even better performance, and among the
three contributions in this project, the latter-proposed method outperforms the
previous methods.
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Chapter 1

Introduction

Image analysis is the process of extracting meaningful information from images. In the past
two decades, along with the exponential growth of the technologies, tremendous images
have been created and collected, and the growing trend is very likely to keep for a long time.
As a result, image analysis has become more and more popular because heaps of useful
knowledge can be extracted from the images, which produces promising results. There are
a few fields in image analysis among which image classification is one of the most crucial
and widely-used fields. Generally speaking, image classification is the task of extracting the
classes of images from a set of images each of which belongs to a specific class. For example,
suppose there is an image dataset of handwritten digits from 0 to 9, matching the images to
the corresponding digits is an image classification task.

1.1 Motivations

Image classification is a difficult machine learning task due to a couple of reasons. First
of all, The dimensionality of the input image is very high. The image is comprised of a
number of pixels each of which is one dimension. Assume the image size is 256 pixels× 256
pixels, which is much smaller than the real-life images, the dimensionality is 65, 536, which
is huge comparing to other machine learning tasks. Secondly, the diversity of images in the
same class can be large. In order to correctly distinguish the images of various classes, the
variability of images in the same class needs to be minimised and the variability of images
between different classes has to be maximised. The large diversity of images in the same
class makes it extremely difficult to minimise the variability of images in the same class,
which therefore causes the complication in image classification.

Convolutional Neural Networks (CNNs) have shown their dominating spot in various
machine learning tasks, such as speech recognition [1][2], sentence classification [16][14]
and especially, image classification [18][20]. However, from the existing efforts taken by
researchers such as LeNet [21][22], AlexNet [18], VGGNet [29], SqueezeNet [11], Inception
[38], Xception [5] and GoogLeNet [37], it can be found that designing CNNs for specific
tasks is very complicated. There are a couple of main issues when utilising CNNs to solve
machine learning tasks of image classification, which are listed below.

• It is challenging to manually search for the optimal architecture of CNNs including
the number of convolutional layers, pooling layers and fully-connected layers, the
attributes of each layer, and the order of the layers in the architecture of CNNs;

• Different machine learning tasks need different CNN architectures, so personalised
architectures of CNNs need to be designed for specific tasks. There are tremendous
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image classification tasks in real-world applications, which requires different CNNs to
solve.

Since the limitations of manually designing the architectures of CNNs have been raised
more frequently in recent years, neuroevolution [31], which uses evolutionary algorithms
to generate artificial neural networks (ANN), has come into the spotlight to resolve the is-
sues. Interested researchers have accomplished promising results on the automatic design
of the architectures of CNNs by using Genetic Programming [36][42] and Genetic Algo-
rithms (GAs) [33][32]. The project aims to explore more efficient and effective methods to
automatically evolve the architectures of CNNs, which are comprised of three parts. First
of all, since the potential of Differential Evolution (DE), GAs and Particle Swarm Optimisa-
tion (PSO) used in evolving CNNs is not fully investigated, based on the encoding strategy
of an IP-Based Particle Swarm Optimisaion (IPPSO) [40] proposed in our summer project,
which achieves encouraging results, the methods using DE and GAs with the same encod-
ing strategy are developed and compared with the state-of-the-art algorithms and IPPSO;
Furthermore, during the experiments in the first part, a limitation of the above Evolution-
ary Computation (EC) methods is exposed, which is that the maximum-length of the CNN
architectures is fixed, so in the second part, A hybrid DE approach is proposed in order to
improve the performance by breaking the maximum-length limitation; Last but not least,
in the past two years, shortcut connections used in DenseNet [10] have been proven its ef-
fectiveness and efficiency in Deep CNNs, but in the first two parts of this project, only the
traditional CNN architectures without shortcut connections are evolved, so a hybrid two-
level method is proposed to evolve both the structure of CNN architectures and the shortcut
connections between layers.

1.2 Goals

The overall goal of this project is to design and develop effective and efficient EC methods
to automatically search for good architectures of CNNs, and analyse and compare their
performance with the state-of-the-art algorithms. The specific objectives of this project are
to

1. Develop effective DE and GA methods using the same encoding strategy in IPPSO
to automatically evolve the architecture of CNNs and obtain a good architecture of
CNNs. To be more specific, the proposed DE and GA methods are expected to be able
to search for the total number of layers, choosing the layer type for each layer, and
obtain the best parameter values for each layer in order to find the CNN architecture
achieving an optimal performance. For example, the DE method might find a good
architecture of CNNs with 5 layers, having a convolutional layer at the third layer and
having a feature map of 2 × 2 convolutional mask as a parameter of the convolutional
layer;

2. Design and develop a hybrid DE approach which are composed of three main steps -
refining the existing IP-Based encoding scheme [40] to break the constraint of predefin-
ing the maximum depth of CNNs; developing new mutation and crossover operators
for the proposed method, which can be applied on variable-length vectors to conquer
the fixed-length limitation of the traditional DE method; and designing and integrat-
ing a second crossover operator into the proposed method to produce the children in
the next generation representing the architectures of CNNs whose lengths differ from
their parents;
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3. Design and develop a hybrid two-level method, which is able to automatically evolve
both the structure of CNN architectures and the shortcut connections. The first level
of the evolution searches for the structure using PSO, e.g. the number of layers and
the layer types; while at the second level of the algorithm, the topology of the shortcut
connections is evolved by DE given the structure obtained at the first level;

4. Since training a CNN can be crawling, and the fitness function used by many other
researchers evaluate each architecture of CNNs on the given dataset by fully training
the CNNs, whose accuracy would be used as the fitness value of the individual, the
whole evolution process can take an unacceptable amount of time. In order to make
the IP-Based EC methods as efficient solutions, this project aims to design an efficient
fitness evaluation method to significantly reduce the time of the evolution process by
reducing the number of epochs and raising the learning rate to obtain the fitness value
faster, which is used as the fitness evaluation of all of the algorithms in this project.

1.3 Major Contributions

The following contributions are offered by this project:

1. DE and GA methods based on IP-Based encoding strategy are developed, and DE, GA
and PSO methods of evolving CNNs are investigated by comparing their performance.
The IP-Based encoding strategy proposed by us has been published in the proceedings
of 2018 IEEE World Congress on Computational Intelligence [40];

2. A second crossover in the hybrid DE method is proposed to evolve the length of
CNNs, and a new DE method is developed by extending the DE operators to be able
to cater for individuals with variable-length. The hybrid DE has been accepted as a pa-
per in the proceedings of The Australasian Joint Conference on Artificial Intelligence
2018 [41];

3. A new CNN architecture with additional connections between layers that are not next
to each other inspired by ResNet [9] and DenseNet [10] is designed, and a two-level
hybrid EC method is developed to evolve the new CNN architecture. We plan to form
a paper, with title of A Two-level Hybrid Evolutionary Computation Method to Evolve
Dynamically-connected Convolutional Neural Networks, based on the two-level hy-
brid EC method, which may be submitted to 2019 IEEE Congress on Evolutionary
Computation;

4. A new fitness evaluation method is developed to reduce the computational cost but
still keep the ability of learning the performance trend of the CNNs.

1.4 Organisation

The rest of the report is organised as follows:

• Chapter 2 provides the background of this project consisting of brief introductions of
CNN architectures, EC algorithms, Internet Protocol Address, and the related work of
using EC methods to evolve CNN architectures;

• Chapter 3 describes the IP-Based GA and DE methods, and the comparison and anal-
ysis of the experimental results of IP-Based GA, DE and PSO;
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• Chapter 4 illustrates the hybrid DE method, and analyses its performance;

• Chapter 5 shows the details of the two-level hybrid EC method, its experimental de-
signs and the result analysis;

• Chapter 6 concludes the project by analysing the performance of all of the EC algo-
rithms developed in this project and pointing out the future work in the area of utilis-
ing EC methods to evolve CNN architectures;

• Appendix lists the resources that are related to this project, but can not be deemed as
the main part of the project.
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Chapter 2

Background

2.1 Convolutional Neural Networks

A typical Convolutional Neural Network (CNN) is drawn in Fig. 2.1, whose architecture is
constituted of four types of layers - convolution layer, pooling layer, fully-connected layer
and output layer. The output layer depends only on the specific classification problem. For
the example of image classification, the number of classes decides the size of the output
layer. Therefore, when designing an architecture of CNNs, the output layer is fixed once the
specific task is given. However, to decide the other three types of layers, first of all, the depth
of the CNN architecture has to be decided; Then, the type of each layer needs to be chosen
from convolution layer, pooling layer and fully-connected layer; Last but not least, since
there are different sets of attributes for different types of layers - filter size, stride size and
feature maps for the convolution layer; kernel size, stride size and pooling type enclosing
max-pooling or average pooling for the pooling layer; and the number of neurons for the
fully-connected layer, the attributes of each layer have to be tuned based on its layer type in
order to accomplish a CNN architecture that can obtain good performance.

Figure 2.1: An typical architecture of the Convolutional Neural Network [12]

2.2 Internet Protocol Address

As the proposed encoding strategy used by the first two contributions of this project is in-
spired by the Internet Protocol Address, it is essential to introduce IP Protocol Address. An
Internet Protocol address (IP address) is a numerical label assigned to each device connected
to a computer network that uses the Internet Protocol for communication [25]. A standard
IP address is made of four decimal integers concatenated by dots, each of which ranges from
0 to 255, e.g. 172.16.254.1. Another representation of the IP address is to convert the deci-
mal values into the corresponding binary numbers with a fixed-length of 8 bits, e.g. 1010
1100.0001 0000. 1111 1110. 0000 0001 as the binary representation of the aforementioned
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example of the standard IP address - 192.168.1.101.
In the computer network, an IP address is configured into a network card on a device,

e.g. a desktop, a laptop or a server. The IP address is used as the identifier of the device
in a local network, so the devices can find and talk to each other within the network. Fur-
thermore, if the devices in different local networks want to communicate with each other,
the subnet can be utilised to fulfil the objective. A subnet defines a specific local network
by specifying an IP range of the subnet, so the target IP address can be easily routed to
the correct subnet and the message from the source device can be effectively delivered
to the device carrying the target IP address. For example, suppose there are two IP ad-
dress - 172.16.254.1 and 172.16.255.1, and the corresponding IP ranges of their subnets are
[172.16.254.1 - 172.16.254.255] and [172.16.255.1 - 172.16.255.255], when the device with the
IP of 172.16.254.1 intends to send a message to the device with the IP address of 172.16.255.1,
if the idea of subnets is not introduced, the message will not be successfully delivered be-
cause the two local networks are isolated during the process of searching an IP address;
however, if the subnets are set, the message and the target IP address will be routed to the
correct subnet first, and then the message can be sent to the target IP address by seeking the
target IP address within the subnet.

2.3 Evolutionary Computation Algorithms

Since the main target of this project is to use EC methods including GAs, DE and PSO, and
their hybrid methods to evolve the architectures of CNNs, in the following sub-sections, the
background of these three EC algorithms is given.

2.3.1 Differential Evolution

Differential Evolution (DE) is a population-based EC method which searches for the optimal
solutions of a problem. It has been proved to be a simple and efficient heuristic method for
global optimisation over continuous spaces [35][34]. Overall, there are four major parts in a
DE algorithm, which are initialisation, mutation, crossover and selection based on the fitness
[26]. First of all, a population of candidate vectors are randomly initialised. Secondly, mu-
tation is applied according to Formula (2.1), where vi,g means the ith temporary candidate
vector of the gth generation; xr0,g, xr1,g and xr2,g indicate three randomly picked candidates
of the gth generation; and F is the differential rate, which is used to control the evolution
rate. Thirdly, the crossover is performed based on Formula (2.2), where uj,i,g represents the
jth dimension of the ith candidate at the gth generation. At the beginning of the crossover
process for each candidate, a random number jrand is generated, and then for each dimen-
sion of each candidate vector, another random number randj is generated, which then is
compared with the crossover rate Cr and jrand as shown in Formula (2.2) to decide whether
the crossover applies on this dimension. After applying the DE operators, a trial vector ui,g
is produced, which is then compared with the parent vector to select the one that has better
fitness. By iterating the mutation, crossover and selection until the stopping criterion is met,
the best candidate can be found.

vi,g = xr0,g + F× (xr1,g − xr2,g) (2.1)

uj,i,g =

{
vj,i,g if randj(0, 1) < Cr or j = jrand

xj,i,g otherwise
(2.2)
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2.3.2 Genetic Algorithm

Genetic Algorithm (GA) is a metaheuristic optimisation method inspired by the process
of natural selection in the area of biology. The bio-inspired operators, such as mutation,
crossover and selection, are utilised to evolve the population in order to obtain a high-
quality solution [24]. The procedure of GA is composed of five parts - initialisation, se-
lection, mutation, crossover and fitness evaluation. At the stage of initialisation, a random
vector of a fixed dimension is repetitively generated and stored in an individual until reach-
ing the population size; Next, the selection is performed by using a selection algorithm to se-
lect the individuals into a mating pool; After that, one individual is selected from the mating
pool and the value of each dimension is randomly chosen to be changed in order to evolve
a new individual; Another way of creating a new individual is to select two individuals in
the mating pool and apply crossover operator by combining a part of the dimensions of one
individual’s vector with those of the other. By iterating the selection, mutation, crossover
and fitness evaluation, the new population can be filled with new individuals to form a new
generation, which can then be evaluated by the fitness evaluation function to find the best
individual. The best individual is recorded for each generation, which is compared with the
best individuals of the previous generations to output the best individual of all generations.
The whole process terminates when the stopping criteria are met, and the best individual of
all generations is reported as the evolved solution.

2.3.3 Particle Swam Optimisation

Particle Swarm Optimization (PSO) is a population-based algorithm, motivated by the social
behaviour of fish schooling or bird flocking proposed by Kennedy and Eberhart in 1995 [15]
[7]. In PSO, there is a population consisting of a number of candidate solutions also called
particles, and each particle has a position and a velocity. The representation of the position
is described in Formula (2.3), where xi is a vector of a fixed dimension representing the
position of the ith particle in the population and xid means the dth dimension of the ith
particle’s position. Formula (2.4) illustrates the velocity of a particle, where vi is a fix-length
vector expressing the velocity of the ith particle and vid means the dth dimension of the ith
particle’s velocity. The way that PSO solves the optimisation problems is to keep moving
the particle to a new position in the search space until the stopping criteria are met. The
position of the particle is updated according to the update equation which incorporates
two equations - the velocity update equation 2.5 and the position update equation 2.6. In
Formula (2.5), vid(t + 1) indicates the updated dth dimension of the ith particle’s velocity,
r1 and r2 carry random numbers between 0 and 1, w, c1 and c2 are PSO parameters that are
used to fine-tune the performance of PSO, and Pid and Pgd bear the dth dimension of the
local best and the global best, respectively. After updating the velocity of the particle, the
new position can be achieved by applying Formula (2.6).

xi = (xi1, xi2, ...xid) (2.3)

vi = (vi1, vi2, ...vid) (2.4)

vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (Pid − xid(t)) + c2 ∗ r2 ∗ (Pgd − xid(t)) (2.5)

xid(t + 1) = xid(t) + vid(t + 1) (2.6)
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2.4 Related Work

Recently, more and more research has been done using EC methods to evolve the archi-
tectures of CNNs. Genetic CNN [42] and CGP-CNN [36] are two of the most recent pro-
posed methods that have achieved promising results in comparison with the state-of-the-art
human-designed CNN architectures.

Genetic CNN uses a fixed-length binary string to encode the connections of CNN ar-
chitectures in a constrained case. It splits a CNN architecture into stages. Each stage is
comprised of numerous convolutional layers which may or may not connect to each other,
and pooling layers are used between stages to connect them to construct the CNN architec-
ture. Due to the fixed-length binary representation, the number of stages and the number
of nodes in each stage have to be predefined, so a large fraction of network structures are
not explored by this algorithm. Other than that, the encoding scheme of Genetic CNN only
encodes the connections, i.e. whether two convolutional layers are connected or not; while
the hyperparameters of the convolutional layers, e.g. the kernel size, the number of feature
maps, and the stride size, are not encoded, so Genetic CNN does not have the ability to
optimise the hyperparameters.

CGP-CNN utilises Cartesian Genetic Programming (CGP) [23] because the flexibility of
CGP’s encoding scheme is suitable to effectively encode the complex CNN architectures.
CGP-CNN employs a matrix of Nr rows and Nc columns to represent the layers of a CNN
architecture and their connections, respectively, so the maximum number of layers is prede-
fined. In addition, as six types of node functions called ConvBlock, ResBlock, max pooling,
average pooling, concatenation and summation are prepared, CGP-CNN is confined to ex-
plore the limited types of layers of CNN architectures. Last but not least, from the experi-
mental results, the computational cost of CGP-CNN is quite high because training CNNs in
fitness evaluation is time-consuming.

In summary, manually design of CNN architectures and parameters is very challenging
and time-consuming. Automatically evolving the architectures of deep CNNs is a promising
approach, but their potential has not been fully explored. DE has shown as an efficient
method in global optimisation but has not been used to evolve deep CNNs. Therefore, we
would like to investigate new approaches using EC methods to automatically evolve the
architectures of deep CNNs.
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Chapter 3

IP-Based EC algorithms

3.1 Introduction

In this part of the project, GAs and DE algorithms are investigated and compared with the
PSO algorithm proposed by us with the name of IPPSO [40], which has already achieved
promising results in image classification tasks. There are a couple of motivations for the
investigation. First of all, the IP-Based Encoding Strategy (IPES) used in IPPSO is easy to be
applied on GAs and DE algorithms; Secondly, the potential of GAs and DE applications for
evolving CNNs is not fully investigated, so it is worth doing the investigation and compar-
ison.

Goals: The goal of this part is to propose DE and GAs methods using IP-Based encod-
ing strategy and compare the performance of these two methods with the state-of-the-art
algorithms and the existing IPPSO. The specific objectives are

• design and develop a DE-Based method to evolve CNN architectures based on IP-
Based encoding strategy;

• design and develop a GA-Based method to automatically design the architectures of
CNNs using the IP-Based encoding strategy;

• investigate the hyperparameters of the fitness evaluation function used in IPPSO, and
find patterns and differences between the DE, GA and PSO approaches.

3.2 The Proposed Algorithms

Section 3.2.1 introduces the IP-Based Encoding Strategy, which was proposed in IPPSO [40]
and adapted in this project; The fitness evaluation method is depicted in Section 3.2.2; The
details of he population initialisation are given in Section 3.2.3, which is used by all of the
algorithms in this project; Section 3.2.4 gives an overview of the algorithms implemented in
this project and the pseudo-code of each algorithm.

3.2.1 IP-Based Encoding Strategy

The IP-Based Encoding Strategy proposed in IPPSO [40] is to use one IP Address to represent
one layer of CNNs and push the IP address into a sequence of interfaces, each of which bears
an IP address and its corresponding subnet, in the same order as the order of the layers in
CNNs. The typical CNNs are composed of three types of layers - Conv Layer, Pooling Layer
and Fully-Connected Layer. In Section 3.2.1, the process of encoding a CNN into a sequence
of IP addresses is elaborated, and in Section 3.2.1, the decoding procedure is described.
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Encoding Procedure The proposed IP-Based Encoding Strategy is to use one IP Address
to represent one layer of CNNs and push the IP address into a sequence of interfaces, each
of which bears an IP address and its corresponding subnet, in the same order as the order of
the layers in CNNs. The typical CNNs are composed of three types of layers - convolutional
layer, pooling layer and fully-connected layer. The first step of the encoding is to work
out the range that can represent each attribute of each type of the CNN layer. There are no
specific limits for the attributes of CNN layers, but in order to practically apply optimisation
algorithms on the task, each attribute has to be given a range which has enough capacity to
achieve an optimal accuracy on the classification problems. In this project, the constraints
for each attribute are designed to be capable of accomplishing a relatively low error rate. To
be specific, for the convolutional layer, there are three attributes, which are filter size ranging
from 1 to 8, number of feature maps from 1 up to 128, and the stride size with the range from
1 to 4. As the three attributes need to be combined into one number, a binary string with
12 bits can contain all the three attributes of the convolutional layer, which are 3 bits for
filter size, 7 bits for the number of feature maps, and 2 bits for the stride size. Following the
similar way, the pooling layer and fully-connected layer can be carried in the binary strings
with 5 bits and 11 bits, respectively. The details of the range of each attribute are listed in
Table 3.1.

Table 3.1: The ranges of the attributes of CNN layers - Convolutional, Pooling, Fullly-
connected layer

Layer Type Parameter Range # of Bits

Conv Filter size [1,8] 3

# of feature maps [1,128] 7

Stride size [1,4] 2

Total 12

Pooling Kernel size [1,4] 2

Stride size [1,4] 2

Type: 1(maximal), 2(average) [1,2] 1

Total 5

Fully-connected # of Neurons [1,2048] 11

Total 11

Once the number of bits of the binary strings has been defined, a specific CNN layer
can be easily translated to a binary string. Suppose a convolutional layer with the filter size
of 2, the number of feature maps of 32 and the stride size of 2 is given, the corresponding
binary strings of [001], [000 1111] and [01] can be calculated by converting the decimal num-
bers1 to the corresponding binary numbers. The final binary string that stands for the given
convolutional layer is [001 000 1110 01] by joining the binary strings of the three attributes
together. The details of the example are shown in Fig. 3.1.

Similar like network engineering where the subnet has to be defined before allocating
an IP address to an interface, i.e. a laptop or desktop, the IP-Based Encoding Strategy needs
to design a subnet for each type of CNN layers. Since the number of bits of each layer type
decides its size of the search space, and the pooling layer takes much fewer bits than the
other two, the chances of a pooling layer being chosen would be much smaller than the other
two. In order to balance the probability of each layer type being selected, a place-holder of
6 bits is added to the binary string of the pooling layer to make it 11 bits, which brings the
odds of picking a pooling layer the same as that of a fully-connected layer. As there are three
types of layers with the maximum bits of 12, a 2-byte binary string has sufficient capacity to
bear the encoded CNN layers. Starting with the convolutional layer of 12 bits, as this is the

1Before the conversion, 1 is subtracted from the decimal number because the binary string starts from 0,
while the decimal value of the attributes of CNN layers begins with 1
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Figure 3.1: An example of how to encode a convolutional layer using a byte array

first subnet, the 2-byte binary representation of the starting IP address would be [0000 0000
0000 0000], and the finishing IP address would be [0000 1111 1111 1111]; The fully-connected
layer of 11 bits starts from the binary string [0001 0000 0000 0000] by adding one to the last
IP address of the convolutional layer, and ends to [0001 0111 1111 1111]; And similarly, the
IP range of the pooling layer can be derived - from [0001 1000 0000 0000] to [0001 1111 1111
1111]. The IP ranges of the 2-byte style for each subset are shown in Table 3.2, which are
obtained by converting the aforementioned binary strings to the 2-byte strings. Now it is
ready to encode a CNN layer into an IP address, and the convolutional layer detailed in Fig.
3.1 is taken as an example. The binary representation of the IP address is [0000 0010 0011
1001] by summing up the binary string of the convolutional layer and the starting IP address
of the convolutional layer’s subnet, which can be converted to a 2-byte IP address of [2.61].
Fig. 3.2 shows an example vector encoded from a CNN architecture with 2 convolutional
layers, 2 pooling layers and 1 fully-connected layer. In order to encoding CNNs of variable-
lengths, any of the layers has the chance to be replaced by a Disabled layer, which is used to
mark some of the CNN layers as removed.

Figure 3.2: An example of the encoded vector of a CNN architecture

Table 3.2: Subnets distributed to the three types of CNN layers
Layer type IP Range

Convolutional Layer 0.0-15.255

fully-connected layer 16.0-23.255

pooling layer 24.0-31.255

Decoding Procedure The encoding process transfers the complicated search space of ar-
chitectures of CNNs to a fixed-dimension search space with the range of 0 to 255 for each
dimension, which makes it straightforward to apply optimisation algorithms; While, dur-
ing the fitness evaluation, it is necessary to decode the sequence of interfaces back to a CNN
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architecture. First of all, the interfaces in the sequence have to be translated to the values
of attributes of CNN layers. In each interface, the IP address can be converted to a binary
string, and the number of bits of the attributes of a specific layer type can be retrieved from
the subnet in the interface. According to the number of bits of the attributes, the binary
string can be split into several binary strings, which can then be converted to decimal val-
ues corresponding to the values of the attributes. Next, the CNN architecture can be re-built
by creating each layer of the CNN from the parsed attributes and connecting each layer by
keeping the same order as they are in the sequence of interfaces.

3.2.2 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 1. First of all, four arguments are
taken in by the fitness evaluation function - the candidate solution which represents an en-
coded CNN architecture, the number of training epochs for training the model decoded
from the candidate solution, the training set which is used to train the decoded CNN archi-
tecture, and the fitness evaluation dataset on which the trained model is tested to obtain the
accuracy used as the fitness value. Secondly, the fitness evaluation process is pretty straight-
forward by training the decoded CNN architecture on the training set for a fixed number of
epochs, and then obtaining the accuracy on the fitness evaluation set, which is actually used
as the fitness value.

Algorithm 1: Fitness Evaluation
Input: The candidate solution c, the training epoch number k, the training set Dtrain, the

fitness evaluation dataset D f itness;
Output: The fitness value f itness;

Train the connection weights of the CNN represented by the candidate c on the training
set Dtrain for k epochs;
acc← Evaluate the trained model on the fitness evaluation dataset D f itness
f itness← acc;
return f itness

3.2.3 Population Initialisation

The population initialisation process consists of multiple repetitions of the procedure of
initialising a candidate until the size of the population is fulfilled. To be specific with the
candidate initialisation, first of all, a type of CNN layer is randomly chosen from the four
types of CNN layers - Conv layer, Pooling layer, Fully-connected layer and Disabled layer;
secondly, once the layer type is set, the range of the IP address is fixed as well, so a random IP
address can be generated within the IP range; Thirdly, an interface is initialised by attaching
the IP address and the subnet of the layer type as its attributes, which then is pushed in
the candidate vector in order; Finally, repeat the previous steps to add more interfaces each
of which bears a random CNN layer until the maximum depth of the CNN architecture is
accomplished.

3.2.4 IP-Based Evolutionary Computation Algorithms

The DE and GA algorithms with the IP-Based encoding strategy are depicted in the follow-
ing sections. However, for the comparison purpose, there are two other algorithms imple-
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mented, which are IPPSO [40] and IP-Based Random Search (IPRS) described in Appendix
A.1.

IP-Based Differential Evolution The basic DE variant with the mutation scheme of DE/rand/1
is implemented, and the IP-Based Encoding Strategy is utilised to convert the variable-
length architectures of CNNs to a fixed number of dimensions in the search space to meet
the fixed-length encoding requirement of traditional DE methods. The IP-Based Differential
Evolution (IPDE) are detailed as follows.

IPDE Algorithm Overview The workflow of IPDE algorithm is to initialise the popu-
lation, apply the DE genetic operation to update the individual for the whole population,
retrieve the best individual from the whole population, repeat step 2 and 3 until the stopping
criteria are met, whose pseudo-code is documented in Algorithm 2.

Algorithm 2: Framework of IPDE
P← Initialize the population with IP-Based Encoding Strategy elaborated in Section
3.2.3;
Pbest ← empty;
while termination criterion is not satisfied do

Apply the DE genetic operations to update each individual in the population
described in Algorithm 3;
evaluate the fitness value of each individual;
Pbest ← retrieve the best individual in the population;

end while

IPDE Individual Update By following the standard DE method, the first step of ap-
plying the genetic operations on a parent individual is to randomly select three different
individuals from the population. The DE mutation cannot be applied to the individual
vector because the individual is represented by a vector, and each interface enclosing the
information of the IP address and the subnet is stored as one dimension of the individual
vector. Therefore, the individual vector has to be converted into a fixed-length vector with
a number in each dimension by extracting each byte of the IP addresses in the individual
vector. Once the vector conversion is done, the DE mutation can be performed on the three
selected individuals to produce a candidate. The crossover can then be performed on the
candidate and the parent individual to obtain the final candidate. Finally, the parent indi-
vidual will be replaced by the candidate if the candidate achieves a better fitness; otherwise,
the parent individual will not be changed.

IP-Based Genetic Algorithm The IP-Base Encoding Strategy is used to construct a search
space with a fixed number of dimensions by encoding the variable-length architectures of
CNNs into a byte vector with a fixed length, and GA is implemented to solve the optimisa-
tion problem in the search space. The IP-Based Genetic Algorithm (IPGA) method adopts
the roulette wheel selection and the two point crossover from the traditional Genetic Algo-
rithm.

IPGA Algorithm Overview The framework of IPGA is composed of four main steps -
initialise the population, apply GA genetic operations to produce individuals until the size
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Algorithm 3: IPDE Update An Individual
Input: parent xi, population P;
Output: child ui;

vi ← Empty candidate
xr0, xr1, xr2 ← Randomly select three unique individuals from the population P;
vi ← Perform DE/rand/1 mutation in Formula (2.1) on xr0, xr1, xr2;
ui ← Perform DE crossover in Formula (2.2) on xi and vi;
u f itness ← Decode the child ui to a CNN and evaluate it;
if u f itness < the fitness of xi then

ui ← xi
end if
return ui

of the child population reach the pre-defined population size, retrieve the best individual
from the new population, repeat step 2 and 3 until the stopping criteria are met, which is
specified in Algorithm 4.

Algorithm 4: Framework of IPGA
P← Initialize the population with IP-Based Encoding Strategy elaborated in Section
3.2.3;
Pbest ← Empty best individual;
while termination criterion is not satisfied do

Apply the GA genetic operations to produce a new population illustrated in
Algorithm 5;
evaluate the fitness value of each individual;
Pbest ← retrieve the best individual in the population;

end while

IPGA Generating New Population At the very beginning the population generation,
the elitism process is executed by selecting a certain number of individuals from the pop-
ulation of the current generation and pushing them through to the population of the new
generation. In order to fill up the rest of the population of the new generation, an indi-
vidual is created by applying GA operations on the population of the current generation,
which then is added into the population of the new generation, and the process of produc-
ing an individual is repeated until reaching the pre-defined population size. The main part
of IPGA is that the IP-Base Encoding Strategy is used to transform the variable-length ar-
chitectures of CNN to the byte vectors with a fixed dimension and vice versa. During the
genetic operations of crossover and mutation, the byte vectors are used; while during the
fitness evaluation, the decoded architectures of CNNs are utilised. The detailed process of
IPGA population generation is explained in Algorithm 5

3.3 Experiment Design

3.3.1 Benchmark Datasets

In the experiments, six widely-used benchmark datasets are chosen to examine the proposed
algorithms, which are the datasets of MNIST Basic (MB), MNIST with a black and white im-
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Algorithm 5: IPGA Generate A New Population
Input: population of the current generation P;
Output: population of the next generation Pnext;

Pnext ← Find the best individuals of a certain number from the population P and pushed
them into the new population Pnext
while the new population Pnext is not filled up do

ind1, ind2 ← Select two individuals from the population P using roulette wheel
selection
child← Apply two point crossover on ind1, ind2
child←Mutate some of the bytes by replacing the number of the byte to be mutated
with a random number within the range of 0 to 255
Pnext ← Add the new individual child into the new population Pnext

end while
return Pnext

age as the Background Image (MBI), MNIST Digits Rotated with a black and white image as
the Background Image (MDRBI), MNIST with a Random Background (MRB), MNIST with
Rotated Digits (MRD), and CONVEX. The MB benchmark dataset and its four variants - the
MBI, MDRBI, MRB and MRD datasets consist of handwritten digits and the corresponding
labels from 0 to 9, and each of the datasets is composed of a training set of 12,000 instances
and a test set of 50,000 instances; while convex images and non-convex images with the cor-
responding labels constitute the CONVEX dataset, which is split into a training set of 8,000
examples and a test set of 50,000 examples.

The reason for picking the six aforementioned datasets is to fulfil the purpose of thor-
oughly testing the proposed algorithms. First of all, the classification task on the MB dataset
and its variants is to classify the handwritten images into the correct labels, which is a multi-
class classification problem, and the difficulties of the tasks vary by adding different factors
of noises into the MB dataset, so the proposed methods can be tested across multi-class clas-
sification problems with diverse complexities. Since the factors of rotation and background
are introduced separately into the MBI, MRB and MRD datasets; while a combination of
these two factors is applied on the MDRBI dataset, the MDRBI dataset holds the highest
complexity among all of the five MNIST datasets. In addition, the binary classification task
on the CONVEX dataset is utilised as a complement to the multi-class classification problem
of the MNIST datasets in order to extend the evaluation of the proposed algorithms to cover
both the multi-class and binary classification tasks. Last but not least, numerous state-of-the-
art methods have reported promising results on these benchmark datasets, which makes it
convenient to collect the results for the comparison purpose.

3.3.2 State-of-the-art Competitors

The state-of-the-art methods, which are reported to have achieved promising results on the
aforementioned benchmark datasets in the literature [4] and on the website2 of the bench-
mark datasets’ provider, are picked as the peer competitors of the proposed algorithms.
The state-of-the-art methods are listed as follows: CAE-2 [27], TIRBM [30], PGBM+DN1
[13], ScatNet-2 [3], RandNet-2 [4], PCANet-2 (softmax) [4], LDANet-2 [4], SVM+RBF [19],
SVM+Poly [19], NNet [19], SAA-3 [19] and DBN-3 [19].

2http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
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3.3.3 Experiment Design

Experiment Workflow Fig. 3.3 shows the experimental process, which is used by all of
the experiments in this project. Firstly, the dataset is split into training set and test set, and
the training set is then divided into training part and test part. The training part and the
test part are passed to the EC application which is the proposed EC algorithm. During the
fitness evaluation, the training part is used to train the neural network, and the test part
is used to obtain an accuracy of the trained neural network, which is used as the fitness
value. Secondly, EC application produces the evolved CNN architecture, which is the best
individual. Lastly, the training set, test set and the evolved CNN architecture are passed to
CNN evaluation, and the test accuracy of the CNN architecture can be achieved, which is
the final result of the experiment.

Figure 3.3: The flowchart of the experimental process

Parameter settings As neuralevolution is literally comprised of two parts - neural network
and evolutionary computation, and evolutionary computation encompasses the evolution-
ary algorithm (e.g. DE, PSO or GA) and the fitness evaluation, the parameter settings can
be split into three groups. In regard to the neural network parameters, based on the com-
plexity of the benchmark datasets that are selected, a CNN architecture with the maximum
depth of 10 used. In terms of the parameters of the evolutionary algorithms, as training
neural network usually takes tremendous computational cost, the population size and the
evolutionary generation has to be limited. After experimenting the population size from 10
to 100 with the step of 10, and the generation from 5 to 15 with the step of 5, the population
size and the generation are set to 30 and 5, respectively, by contemplating the time cost for
the evolutionary process without compromising the accuracy in the final result. Apart from
these two parameters that are commonly used by all of the proposed IPEC methods, the
other method-specific parameters are defined in Section 3.3.3. With regard to the parame-
ters of the fitness evaluation, since training the whole dataset takes an enormous amount
of time, using the partial dataset tends to drastically speed up the fitness evaluation, which
brings the percentage of the dataset as a hyperparameter of the fitness evaluation. In addi-
tion, since training the very deep neural network is crawling, it is more efficient to train the
neural network for a small number of epochs to learn a trend of the neural network, which is
incorporated as another parameter of the fitness evaluation. The two parameters related to
the fitness function vary in different experiments, and they will be specified in the following
specific experiments.

All of the parameters are configured according to the conventions in the communities
of DE [8], PSO [39] and GA [6] along with taking into account the small population and
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complexity of the search space obtained by applying the IP-Base Encoding Strategy, which
are listed in Table 3.3.

Table 3.3: Parameter list
Parameter Name Parameter Meaning Value

IPDE

F differential rate 0.6

cr cross over rate 0.45

IPPSO

c1 acceleration coefficient array for Pid 1.49618

c2 acceleration coefficient array for Pgd 1.49618

w inertia weight for updating velocity 0.7298

IPGA

mr mutation rate 0.01

cr cross over rate 0.9

er elitism rate 0.1

IPRS

radius random search radius 5

Experiments to compare IPECs and the state-of-the-art methods First of all, the proposed
algorithms need to be compared with the state-of-the-art methods in order to prove the com-
petence of these algorithms. There are three IPEC methods - IPDE, IPGA and the previously
proposed IPPSO being inspected, and from the statistical point of view, it is necessary to
obtain the results from 30 runs for each algorithm, so running the experiments could take
a huge amount of time. However, as the fitness evaluation plays a fundamental role in the
computational cost, if the fitness evaluation can speed up, the total time of the experiments
can accomplish a magnificent plunge. Therefore, the partial dataset with 10% is used to train
the CNN architecture during the fitness evaluation and the number of epochs is limited to 5
epochs, which cut down the time of each run of each algorithm on each dataset to a couple
of hours approximately.

In addition, using 10% of the dataset might not be able to yield a good model due to
the under-fitting issue caused by the lack of training data, so it is worth doing an experi-
ment using the whole training dataset. However, whether to run the experiments of using
whole training dataset for only one of the algorithm or all of the three algorithms can be
decided based on the results of the experiments with 10% of the dataset because if the dif-
ference of the performance among these methods is not obvious, the IPDE method with the
whole training dataset can be experimented, where the results are used as representatives
of these three algorithms to be compared with the state-of-the-art methods; otherwise, we
will perform the experiments of using the whole training dataset for all of the three IPEC
algorithms.

Experiments to compare IPECs and IPRS In order to verify the effectiveness of IP-Based
Encoding Strategy, the experiment of IPRS with 10% of the dataset and 5 epochs will be
performed. If the IP-Based random search performs as good as the other EC methods, and
it is competitive to the state-of-the-art methods, it will prove that the IP-Based Encoding
Strategy is capable to transform the complicated search space of the architectures of CNNs
to a search space that is easy to be optimised. Furthermore, if all of the IPEC methods and
IPRS with 10% of the dataset gain a competing accuracy to the state-of-the-art methods,
it will demonstrate that the optima of the transformed search space correctly reflect the
best architectures of CNNs, which can again demonstrate the powerfulness of the IP-Based
Encoding Strategy.
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Experiments to compare IPECs with each other For the purpose of analysing which of
the three IPEC methods has better performance, the results of the experiments of all of the
three IPEC algorithms are compared by applying the statistical test. As the results of the
IPEC methods have been obtained in the above experiments, there are no extra experiments
needed.

Experiments to fine-tune the hyperparameters of fitness evaluation An experiment is
designed to fine-tune the two hyperparameters of fitness evaluation, which are the number
of training epochs and the the percentage of dataset. The details of the experiment can be
found in Appendix A.2.

Statistical Tests on the results Since both Random Search and EC methods are stochastic,
statistical significance test is required to make the comparison result more convincing. When
comparing the Random Search or EC methods with the state-of-the-art method, One Sam-
ple T-Test is applied to test whether the group of samples is better or not because only the
best error rates of state-of-the-art methods are reported, but not the statistical results; when
a comparison of error rates between any two of the stochastic methods is performed, Two
Sample T-test is utilised to determine whether the difference is significant enough or not;
when analysing the computational cost, the generation, when the optimised CNN architec-
ture is accomplished, is taken for the statistical comparison, and Mann-Whitney-Wilcoxon
(MWW) is chosen as the significance test method because the generation samples are not
continuous data.

3.4 Results and Discussions

As there are two hyperparamters of the IP-Based method - the percentage of dataset and the
training epochs used for fitness evaluation, and each experiment is done with a certain per-
centage and a fixed number of epochs, in order to make it easier to refer to the method used
by a specific experiment, the method name, the percentage of the dataset and the training
epochs are concatenated with a delimiter of hyphen as the unique name of the method used
in an experiment. Taking IPDE with 10% of dataset and 5 training epochs as an example, the
name of IPDE-10%-5 is used wherever the method is referred. Each group of the results are
collected from one experiment which performs 30 runs of one unique method on a specific
dataset. For example, one group of the result may be obtained from 30 runs of IPDE-10%-5
on the CONVEX dataset. The full results contain many groups of the results captured by
performing all of the methods to be compared on all of the datasets.

3.4.1 Performance Comparison between IPECs and the state-of-the-art methods

The experimental results and the comparison between the proposed EC algorithms and the
state-of-the-art (SOA) methods are shown in Table 3.4. In order to clearly show the com-
parison results, the terms (+) and (-) are provided to indicate the result of proposed method
is better or worse than the best result obtained by the corresponding peer competitor; The
term (=) shows that the mean error rate of the proposed method are slightly better or worse
than the competitor, but the difference is not significant from the statistical point of view;
The term – means there are no available results reported or cannot be counted. As there
are results from 5 experiments compared to the state-of-the-art methods, 5 mathematical
operators in the parentheses to represent the comparison conclusions of IPDE-10%-5, IPGA-
10%-5, IPPSO-10%-5, IPRS-10%-5 and IPDE-100%-5, respectively from left to right.

18



IPDE-10%-5 vs. SOA methods: By comparing IPDE-10%-5 with the state-of-the-arts
methods using One Sample T-Test to determine whether the results are better than a mean
value from the statistical point of view, it can be observed that IPDE achieves encouraging
performance in terms of error rates shown in Table 3.4. To be specific, on the CONVEX
benchmark dataset, IPDE-10%-5 outperforms five of the nine state-of-the-art methods; on
the MB benchmark, the IPDE-10%-5 attains a better error rate than six of the ten state-of-the-
art methods; on the MBI benchmark, IPDE-10%-5 beats all of the state-of-the-art methods;
on the MDRBI benchmark, although the mean error rate of IPDE-10%-5 is less than 38.54%
achieved by LDANet-2, the P-value of One Sample T-Test is 0.4692 which indicates that the
difference between the results of IPDE-10%-5 with 38.54 is not statistically significant, so
IPDE-10%-5 can be deemed equivalent to LDANet-2 ranking the third among the twelve
state-of-the-art methods; for MRB benchmark, the mean error rate of IPDE-10%-5 is better
than 6.08% achieved by PGBM+DN-1, but the P-value of 0.5985 between the error rate of
IPDE-10%-5 and 6.08% does not prove the significance of the difference, so IPDE-10%-5 can
be expected to perform just as good as PGBM+DN-1; for MRD benchmark, IPDE-10%-5
outruns the state-of-the-arts method apart from TIRBM.

Table 3.4: The classification errors of IPDE-10%-5, IPGA-10%-5, IPPSO-10%-5, IPRS-10%-5
and IPDE-100%-5 against the peer competitors

classier CONVEX MB MBI MDRBI MRB MRD

CAE-2 – 2.48 (+ + + + +) 15.50 (+ + + + +) 45.23 (+ + + + +) 10.90 (+ + + + +) 9.66 (+ + + + +)

TIRBM – – – 35.50 (- - - = +) – 4.20 (- - - - -)

PGBM+DN-1 – – 12.15 (+ + + + +) 36.76 (- - - = +) 6.08 (= = = = +) –

ScatNet-2 6.50 (- - - - -) 1.27 (- - - - -) 18.40 (+ + + + +) 50.48 (+ + + + +) 12.30 (+ + + + +) 7.48 (+ + + + +)

RandNet-2 5.45 (- - - - -) 1.25 (- - - - -) 11.65 (+ + + + +) 43.69 (+ + + + +) 13.47 (+ + + + +) 8.47 (+ + + + +)

PCANet-2 (softmax) 4.19 (- - - - -) 1.40 (- = - - -) 11.55 (+ + + + +) 35.86 (- - - = +) 6.85 (+ = + + +) 8.52 (+ + + + +)

LDANet-2 7.22 (- - - - -) 1.05 (- - - - -) 12.42 (+ + + + +) 38.54 (= = = =) 6.81 (+ = = + +) 7.52 (+ + + + +)

SVM+RBF 19.13 (+ + + + +) 30.03 (+ + + + +) 22.61 (+ + + + +) 55.18 (+ + + + +) 14.58 (+ + + + +) 11.11 (+ + + + +)

SVM+Poly 19.82 (+ + + + +) 3.69 (+ + + + +) 24.01 (+ + + + +) 54.41 (+ + + + +) 16.62 (+ + + + +) 15.42 (+ + + + +)

NNet 32.25 (+ + + + +) 4.69 (+ + + + +) 27.41 (+ + + + +) 62.16 (+ + + + +) 20.04 (+ + + + +) 18.11 (+ + + + +)

SAA-3 18.41 (+ + + + +) 3.46 (+ + + + +) 23 (+ + + + +) 51.93 (+ + + + +) 11.28 (+ + + + +) 10.30 (+ + + + +)

DBN-3 18.63 (+ + + + +) 3.11 (+ + + + +) 16.31 (+ + + + +) 47.39 (+ + + + +) 6.73 (+ = = + +) 10.30 (+ + + + +)

IPDE-10%-5(best) 8.56 1.16 6.63 32.20 3.88 3.84

IPDE-10%-5(mean) 11.65 1.47 10.30 39.33 5.89 5.81

IPDE-10%-
5(standard devia-
tion)

1.94 0.15 1.58 5.87 1.97 1.17

IPGA-10%-5(best) 7.61 1.08 6.61 31.25 3.93 4.62

IPGA-10%-5(mean) 11.57 1.46 10.09 38.84 6.37 5.69

IPGA-10%-
5(standard devia-
tion)

2.10 0.17 2.15 5.33 1.60 0.66

IPPSO-10%-5(best) 8.75 1.22 5.91 30.42 3.27 4.62

IPPSO-10%-5(mean) 12.65 1.56 9.86 38.79 6.26 6.07

IPPSO-10%-
5(standard devia-
tion)

2.13 0.17 1.84 5.38 1.54 0.71

IPRS-10%-5(best) 8.93 1.01 6.36 26.88 3.73 3.78

IPRS-10%-5(mean) 12.60 1.51 9.86 36.94 5.99 5.54

IPRS-10%-5(standard
deviation)

2.20 0.15 2.03 4.67 1.35 0.68

IPDE-100%-5(best) 7.25 1.23 5.45 26.83 3.54 4.45

IPDE-100%-5(mean) 11.62 1.57 7.54 32.07 4.88 5.91

IPDE-100%-
5(standard devia-
tion)

3.87 0.18 1.03 2.65 0.69 1.34

IPGA-10%-5 vs. SOA methods: It can be discovered that IPGA-10%-5 excels by exam-
ining the error rates of IPGA-10%-5 and its competitors listed in Table 3.4. More specifically,
it obtains the same rankings as IPGA-10%-5 with the fifth, the first, tied for fourth place
and the second on the CONVEX, MBI, MDRBI and MRD benchmark datasets, respectively;
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for the MB benchmark, the P-value calculated by One Sample T-Test between the error rate
and 1.4% acheived by PCANet-2 (softmax) is 0.0668, so the significance of the difference
is not satisfied, which implies the IPGA-10%-5 ties PCANet-2 (softmax) at the fourth place
among the listed methods; for the MRB benchmark, the P-values of 0.3270 and 0.1338 are
received from One Sample T-test of 6.08% and 6.85%, respectively, which implies that there
is no significant difference by comparing the error rate of IPGA-10%-5 with the best four
state-of-the-art algorithms, so IPGA-10%-5 could be claimed as one of the best solutions on
the MRB benchmark.

IPPSO-10%-5 vs. SOA methods: As shown in Table 3.4, IPPSO-10%-5 achieves promis-
ing results across all of the six benchmark datasets. To be detailed, for the CONVEX, MBI,
MDRBI and MRD benchmark datasets, it stays in the same positions exactly as IPDE-10%-
5 and IPGA-10%-5; for the MB benchmark, it is defeated by four of the state-of-the-art
methods, which is the same as IPDE-10%-5; for the MRB benchmark, the P-value of 0.5388
argues that IPPSO-10%-5 does not perform worse than the best state-of-the-art method
named PGBM+DN-1, even though the mean error rate of 6.26% is a bit worse than 6.08% of
PGBM+DN-1, and the P-values of 0.0585 and 0.0434 calculated by applying One Sample T-
test against 6.81% and 6.85%, respectively, indicates that IPPSO-10%-5 does not outperform
LDANet-2, but it is superior to PCANet-2 (softmax).

IPDE-100%-5 vs. SOA methods: From the results listed in Table 3.4, overall, IPDE-
100%-5 accomplishes a more promising performance than IPDE-10%-5 by being compared
with the state-of-the-art methods. It ranks the fifth, the fifth, the first and the second for
the benchmark datasets of CONVEX, MB, MBI and MRD, respectively, which is the same
as IPDE-10%-5; However, it performs the best on both the MDRBI and MRB benchmark
datasets, which outperforms IPDE-10%-5.

3.4.2 Performance Comparison between IPECs and IPRS

IPRS-10%-5 vs. SOA methods: IPRS-10%-5 can be proved as a strong competitor by in-
specting Table 3.4. Considering the error rates on the CONVEX, MBI and MRD datasets, it
accomplishes the same rankings as IPDE-10%-5, IPGA-10%-5, and IPPSO-10%-5; in terms of
the performance on MB, it possesses the fifth ranking position which is the same as that of
IPDE-10%-5 and IPPSO-10%-5; regarding the MRB benchmark, the same as IPDE-10%-5, it
takes the tied for first place with PGBM+DN-1, which is supported by the P-value of 0.7112
and outperforms the other state-of-the-art methods; with regard to the MDRBI benchmark,
it achieves an error rate no better than 38.54% of LDANet-2 and no worse than TIRBM up-
held by the P-values of 0.1020 and 0.0706 collected by One Sample T-Test agaist 35.5% and
38.54%, respectively, which means it ties the best four state-of-the-art methods for first place
and performs better than the others.

IPDE-10%-5 vs. IPRS-10%-5: In terms of the error rate, none of the test results of Two
Sample T-Test between IPDE-10%-5 and IPRS-10%-5 across all of the six benchmark datasets
can prove any significant difference between these two methods, which can be seen in Table
3.5. With regard to the generation which reflects the computational cost, according to the
results of the MWW test, neither of these two methods outstands.

IPGA-10%-5 vs. IPRS-10%-5: By analysing the Two Sample T-Test results on the error
rate and the MWW test result on the generation listed in Table 3.5, from the statistical point
of view, it can be concluded that IPGA-10%-5 obtains the similar performance as that of
IPRS-10%-5 both in terms of the accuracy and the computational cost.

IPPSO-10%-5 vs. IPRS-10%-5: In Table 3.5, one P-value on the first row and one P-value
on the second row indicate that the significant difference is supported. The mean error rates
of these two methods can be found in Table 3.4, and the mean error rate of IPRS-10%-5 on
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Table 3.5: Two Sample T-Test between a pair of IPDE-10%-5, IPGA-10%-5, IPPSO-10%-5 and
IPRS-10%-5

CONVEX MB MBI MDRBI MRB MRD

IPDE-10%-5 and IPRS-10%-5

Error Rate 0.08 0.35 0.35 0.09 0.82 0.29

Generation 0.73 0.12 0.73 0.58 0.58 0.79

IPGA-10%-5 and IPRS-10%-5

Error Rate 0.08 0.29 0.68 0.17 0.33 0.42

Generation 0.66 0.46 0.88 0.79 0.21 0.92

IPPSO-10%-5 and IPRS-10%-5

Error Rate 0.94 0.21 1.00 0.16 0.48 0.0047

Generation 0.23 0.06 0.66 0.69 0.04236 0.17

IPDE-10%-5 and IPGA-10%-5

Error Rate 0.88 0.82 0.67 0.75 0.32 0.66

Generation 0.43 0.02574 0.91 0.74 0.60 0.67

IPDE-10%-5 and IPPSO-10%-5

Error Rate 0.06 0.0359 0.32 0.71 0.43 0.29

Generation 0.29 0.00086 0.28 0.25 0.02088 0.03486

IPGA-10%-5 and IPPSO-10%-5

Error Rate 0.06 0.0416 0.67 0.98 0.78 0.0468

Generation 0.07 0.24 0.51 0.40 0.0035 0.24

the MRD benchmark dataset is less than that of IPPSO-10%-5, so IPRS-10%-5 outperforms
IPPSO-10%-5 on the MRD benchmark in terms of the error rate; However, the mean gener-
ation of IPPSO-10%-5 on the MRB benchmark dataset is 1.40 which is much less than 2.07
achieved by IPRS-10%-5 on the MRB benchmark, so IPPSO-10%-5 spends less computational
cost than IPRS-10%-5 on the MRB benchmark.

3.4.3 Performance Comparison between IPECs

IPDE-10%-5 vs. IPGA-10%-5: Among all of the P-values in Table 3.5, 0.02574 in bold is the
only one that shows a significant difference. By comparing 2.43 - the mean generation of
IPDE-10%-5 on the MB benchmark dataset with 1.59 - the corresponding mean generation
of IPGA-10%-5, IPGA-10%-5 attains better efficiency in terms of computational cost; while,
neither of these two methods defeats each other on the MB benchmark in terms of the classi-
fication accuracy. In regard to the other five benchmark datasets, both of them gain a similar
performance both in regard to the error rate and the generation used to attain the optimised
CNN architecture.

IPDE-10%-5 vs. IPPSO-10%-5: In the generation row of Table 3.5, three of the P-values
on the MB, MRB and MRD columns are less than 0.05 - the confidence level. The mean
generation values of IPDE-10%-5 on the MB, MRB and MRD are 2.43, 2.27 and 2.30, and the
corresponding mean generation values of IPPSO-10%-5 are 1.17, 1.40 and 1.63, so IPPSO-
10%-5 is more efficient than IPDE-10%-5 on these three benchmarks. Among the above
three benchmarks, for the MB dataset, IPPSO-10%-5 accomplishes a less error rate than that
of IPDE-10%-5, which can be retrieved from Table 3.4, so from the statistical point of view,
IPDE-10%-5 excels on the MB benchmark in terms of the classification accuracy; However,
for the other two benchmark among the MB, MRB and MRD, the difference between these
two methods is not significant. Apart from the aforementioned three benchmarks, neither
of IPDE-10%-5 or IPPSO-10%-5 exceeds each other.

IPGA-10%-5 vs. IPPSO-10%-5: In Table 3.5, the significant P-values in bold appear in
the columns of MB, MRB and MRD which are the same columns as those of the compar-
ison between IPDE-10%-5 and IPPSO-10%-5. For the MB and MRD benchmark datasets,
as the mean error rates of IPGA-10%-5 are less than the corresponding mean error rates of
IPPSO-10%-5, which can we observed in Table 3.4, IPGA-10%-5 demonstrates its superior-
ity to IPPSO-10%-5 in terms of the classification accuracy on the MB and MRD benchmark
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datasets. In addition, by checking the P-values of the generation on MB and MRD columns
in Table 3.5, IPGA-10%-5 does not compromise the computational cost to gain the better ac-
curacy on these two datasets. For the MRB benchmark, the bold 0.0035 shows the significant
difference between the generation samples of these two methods, and the mean generations
of IPGA-10%-5 and IPPSO-10%-5 are 2.47 and 1.40, respectively, so the generation used to
obtain the best CNN architecture on the MB dataset by IPGA-10%-5 is larger than that used
by IPPSO-10%-5, which means there is more computational cost needed for IPGA-10%-5
given the MB benchmark. Apart from these three significant P-values in Table 3.5, neither
of these two methods outstrips each other from the statistical point of view.

3.4.4 Performance Comparison by tuning the hyperparameters of fitness evalu-
ation

The experiments of fine-tuning the percentage of dataset used for the evolutionary process
among 10%, 40%, 70% and 100%, and the training epochs during fitness evaluation among
5, 10 and 15 are done. The initial trend of how the hyperparameters affect the classification
accuracy of IPDE has been obtained, and the details can be found in Appendix A.3.

3.5 Conclusions

It can be concluded that the proposed EC methods including IPDE and IPGA along with the
previous IPPSO and the IP-Based Random Search method have obtained promising results
on the benchmark datasets by comparing them to the state-of-the-art algorithms. It is also
observed that the IP-Based EC methods do not outperform the IP-Based Random Search al-
gorithm, and none of them significantly excels in terms of the accuracy and computational
cost on the given dataset by applying statistical tests on their results. However, the limited
complexity of the benchmark datasets might not tell the performance differences between
these methods because it is easy to achieve a relatively hight accuracy for easy classification
tasks. In addition, there is another limitation of the proposed EC methods, which is that
the maximum depth of the architectures of CNNs has to be set before the commencement
of the evolutionary process, so any CNN architectures that exceed the maximum depth are
not explored by the EC methods. For simple tasks, setting a maximum depth is straightfor-
ward, e.g. a maximum depth of 10 layers for the above experiments, but for some extremely
complicated tasks, it would be hard to set a maximum length of the architectures of CNNs,
as the maximum depth is not known, and using an over large depth may result in terrible
computational cost, while setting a small number as the depth may not be able to acquire an
optimal CNN architecture.
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Chapter 4

The Proposed Hybrid DE Approach

4.1 Introduction

The IP-Based Encoding Strategy (IPES) [40] has demonstrated its powerfulness for evolving
deep CNNs in the first part of this project, but it has a critical drawback which is that the
maximum depth of the CNN architectures has to be set before the commencement of the
evolutionary process. Therefore, the encoding strategy is refined in the proposed algorithm
to break the constraint of the predefined maximum length.

DE has been chosen as the base algorithm because of a couple of reasons. The first reason
is that DE has been proved as an efficient algorithm to evolve CNN architectures in Chapter
3. Other than that, the more important reason is that DE has some kind of local search by
selecting the best individual between the parent and the child after mutation and crossover,
and this kind of local search is used for evolving the length of the CNN architecture because
the length of CNN architectures represented by the parent and the child, which achieved
better fitness, will be used as an individual in the next generation.

Goals: The goal of this part is to propose a new DE method for automatically evolv-
ing the structures and parameters of deep CNNs without restricting the maximum-length,
which will be achieved by removing the disabled layer when encoding CNN architectures,
new mutation and crossover operators of DE, and a second crossover operator. The pro-
posed method named DECNN will be examined and compared with 12 state-of-the-art
methods on six widely-used datasets of varying difficulty. The specific objectives are

• refine the existing effective encoding scheme used by IPPSO [40] to break the con-
straint of predefining the maximum depth of CNNs by removing the disabled layer;

• design and develop new mutation and crossover operators for the proposed DECNN
method, which can be applied on variable-length vectors to conquer the fixed-length
limitation of the traditional DE method;

• design and integrate a second crossover operator into the proposed DECNN to pro-
duce the children in the next generation representing the architectures of CNNs whose
lengths differ from their parents.

4.2 The Proposed Algorithm

As mentioned in Section 3.5, there is a limitation of the maximum length of the architec-
tures of CNNs because the traditional methods of PSO, DE and GA are used to explore a
search space with a fixed dimension. Even though by introducing the Disabled Layer in
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the encoding strategy, the aforementioned algorithms are able to evolve the variable-length
architectures of CNNs to some extent, it would be better to develop a method without any
constraints in terms of the maximum length of the architectures of CNNs that the algorithm
is capable to learn. The proposed hybrid DE approach uses DE as the main evolutionary
algorithm, and a second crossover operator is proposed to generate children whose lengths
differ from their parents to fulfil the requirement of evolving variable-length architectures
of CNNs.

4.2.1 DECNN Algorithm Overview

The overall procedure of the proposed DECNN algorithm is written in Algorithm 6. The
pivotal part of DECNN is the second crossover described in Section 4.2.5, which produces
two children representing variable-length CNNs. By selecting the best individual between
the two children and their parent, a sort of local search is performed to search for the CNN
architecture with a specific length that tend to achieve better fitness.

Algorithm 6: Framework of IPDE
P← Initialise the population elaborated in Section 4.2.2;
Pbest ← empty;
while termination criterion is not satisfied do

Apply the refined DE mutation and crossover described in Section 4.2.4;
Apply the proposed second crossover to produce two children, and select the best
between the two children and their parents illustrated in Section 4.2.5;
evaluate the fitness value of each individual;
Pbest ← retrieve the best individual in the population;

end while

4.2.2 Population Initialisation

As the individuals are required to be in different lengths, the population initialisation starts
by randomly generating the lengths of individuals. In the proposed DECNN, the length
is randomly sampled from a Gaussian distribution with a standard deviation ρ of 1 and
a centre µ of a predefined length depending on the complexity of the classification task
as shown in Equation (4.1). After obtaining the candidate’s length, the layer type and the
attribute values can be randomly generated for each layer in the candidate. By repeating the
process until reaching the population size to accomplish the population initialisation.

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

(4.1)

4.2.3 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 7. First of all, four arguments are
taken in by the fitness evaluation function, which are the candidate solution which rep-
resents an encoded CNN architecture, the training epoch number for training the model
decoded from the candidate solution, the training set which is used to train the decoded
CNN architecture, and the fitness evaluation dataset on which the trained model is tested
to obtain the accuracy used as the fitness value. Secondly, the fitness evaluation process is
pretty straightforward by using the back propagation to train the decoded CNN architec-
ture on the training set for a fixed number of epochs, and then obtaining the accuracy on
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the fitness evaluation set, which is actually used as the fitness value. For the purpose of
reducing computational cost, the candidate CNN is only trained on a partial dataset for a
limited number of epochs, which are controlled by the arguments of the fitness function - k,
D train and D f itness.

Algorithm 7: Fitness Evaluation
Input: The candidate solution c, the training epoch number k, the training set D train, the

fitness evaluation dataset D f itness;
Output: The fitness value f itness;

Train the connection weights of the CNN represented by the candidate c on the training
set D train for k epochs;
acc← Evaluate the trained model on the fitness evaluation dataset D f itness
f itness← acc;
return f itness

4.2.4 DECNN DE Mutation and Crossover

The proposed DECNN operations are similar to the standard DE mutation and crossover
as described in Section 2.3.1, but it introduces an extra step to trim the longer vectors be-
fore applying any operation because the DECNN candidates have different lengths and the
traditional DE operations in Equation (2.1) and (2.2) only apply on fixed-length vectors. To
be specific, the three random vectors for the mutation are trimmed to the shortest length
of them, and during the crossover, if the trial vector generated by the mutation is longer
than the parent, it will be trimmed to the length of the parent. The details are described in
Algorithm 8.

Algorithm 8: DECNN Mutation and Crossover
Input: ith parent xi, population P;
Output: child ui;

vi ← Empty candidate
xr0, xr1, xr2 ← Randomly select three unique individuals from the population P;
xr1, xr2 ← Find the shorter individual between xr1, xr2 and randomly slice the other
individual to the same length as that of the shorter one;
vi ← Perform the latter part of DE/rand/1 mutation F× (xr1,g − xr2,g) on xr1, xr2;
xr0, vi ← Find the shorter individual between xr0, vi and randomly slice the other
individual to the same length as that of the shorter one;
vi ← Perform the first part of DE/rand/1 mutation xr0,g + bytes vector candidateg on
xr0, vi;
xi, vi ← Find the shorter individual between xi, vi and randomly slice the other
individual to the same length as that of the shorter one;
ui ← Perform crossover on xi and vi;
return ui

4.2.5 DECNN second crossover

Similar as the crossover of GAs, each individual of the two parents is split into two parts by
slicing the vector at the cutting points, and swap one part with each other. The cutting point
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is chosen by randomly finding a position based on Gaussian distribution with the middle
point as the centre and a hyperparameter ρ as the standard deviation to control the variety
in the population. The flow of the second crossover is outlined in Fig. 4.1.

Figure 4.1: second crossover of the proposed DECNN algorithm

4.3 Experiment Design

4.3.1 Benchmark Datasets and State-of-the-art Competitors

In order to perform a fair comparison between DECNN and the proposed EC algorithms in
the first part of this project, the same benchmark datasets and the same peer competitors are
utilised, which are described in Section 3.3.1 and 3.3.2, respectively.

4.3.2 Parameter settings of the proposed EC methods

All of the parameters are configured according to the conventions in the communities of
DE [8] along with taking into account a small population to safe computation time and the
complexity of the search space. For the evolutionary process, 30 is set as the population size
and 20 is used as the number of generations; In regard to the fitness evaluation, the number
of training epochs is set to 5 and 10% of the training dataset is passed for evaluation; In terms
of the DE parameters, 0.6 and 0.45 are used as the differential rate and the crossover rate,
respectively; The hyperparameter ρ of second crossover is set to 2, and µ of the population
initialisation is set to 10; 30 independent runs is performed by the proposed DECNN on
each of the benchmark dataset.

4.4 Results and Discussions

Since DE is stochastic, statistical significance test is required to make the comparison result
more convincing. When comparing the proposed DECNN with the state-of-the-art methods,
One Sample T-Test is applied to test whether the results of DECNN is better; when the
comparison of error rates between DECNN and the peer EC competitor named IPPSO [40] is
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performed, Two Sample T-test is utilised to determine whether the difference is statistically
significant or not. Table 4.1 shows the comparison results between the proposed DECNN
and the state-of-the-art algorithms; Table 4.2 compares DECNN with IPPSO.

4.4.1 DECNN vs. State-of-the-Art methods

The experimental results and the comparison between the proposed DECNN and the state-
of-the-art methods are shown in Table 4.1. In order to clearly show the comparison results,
the terms (+) and (-) are provided to indicate the result of DECNN is better or worse than the
best result obtained by the corresponding peer competitor; The term (=) shows that the mean
error rate of DECNN are slightly better or worse than the competitor, but the difference is
not significant from the statistical point of view; The term – means there are no available
results reported from the provider or cannot be counted.

It can be observed that the proposed DECNN method achieves encouraging perfor-
mance in terms of the error rates shown in Table 4.1. To be specific, the proposed DECNN
ranks the fifth on both the CONVEX and MB benchmark datasets; for the MBI benchmark,
DECNN beats all of the state-of-the-art methods; for the MDRBI dataset, the mean error
rate of DECNN is the fourth best, but the P-value of One Sample T-Test between DECNN
and the third best is 0.0871, which indicates that the significance difference is not supported
from the statistical point of view, so DECNN ties the third with PGBM+DN-1; for the MRB
benchmark, the mean error rate of DECNN is smaller than all other methods, but the differ-
ence between DECNN and the second best algorithm is not significant given the calculated
P-value of 0.1053, so DECNN ties the first with PGBM+DN-1; for the MRD benchmark,
DECNN outruns the state-of-the-arts method apart from TIRBM. In addition, by looking at
the best results of DECNN, DECNN achieves the smallest error rates on five out of the six
datasets compared with the 12 state-of-the-art methods, which are 1.03% on MB, 5.67% on
MBI, 32.85% on MDRBI, 3.46% on MRB and 4.07% on MRD. This shows that DECNN has
the potential to improve the state-of-the-art results.

Table 4.1: The classification errors of DECNN against the peer competitors
classier CONVEX MB MBI MDRBI MRB MRD

CAE-2 – 2.48 (+) 15.50 (+) 45.23 (+) 10.90 (+) 9.66 (+)

TIRBM – – – 35.50 (-) – 4.20 (-)

PGBM+DN-1 – – 12.15 (+) 36.76 (=) 6.08 (=) –

ScatNet-2 6.50 (-) 1.27 (-) 18.40 (+) 50.48 (+) 12.30 (+) 7.48 (+)

RandNet-2 5.45 (-) 1.25 (-) 11.65 (+) 43.69 (+) 13.47 (+) 8.47 (+)

PCANet-2 (softmax) 4.19 (-) 1.40 (-) 11.55 (+) 35.86 (-) 6.85 (+) 8.52 (+)

LDANet-2 7.22 (-) 1.05 (-) 12.42 (+) 38.54 (+) 6.81 (+) 7.52 (+)

SVM+RBF 19.13 (+) 30.03 (+) 22.61 (+) 55.18 (+) 14.58 (+) 11.11 (+)

SVM+Poly 19.82 (+) 3.69 (+) 24.01 (+) 54.41 (+) 16.62 (+) 15.42 (+)

NNet 32.25 (+) 4.69 (+) 27.41 (+) 62.16 (+) 20.04 (+) 18.11 (+)

SAA-3 18.41 (+) 3.46 (+) 23 (+) 51.93 (+) 11.28 (+) 10.30 (+)

DBN-3 18.63 (+) 3.11 (+) 16.31 (+) 47.39 (+) 6.73 (+) 10.30 (+)

DECNN(best) 7.99 1.03 5.67 32.85 3.46 4.07

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

4.4.2 DECNN vs. IPPSO

As none of IPPSO, IPDE and IPGA outperforms the other in first part of this project from
statistical point of view, IPPSO is used as a representative of the three EC algorithms, which
is compared with the proposed DECNN. In Table 4.2, it can be observed that the mean
error rates of DECNN are smaller across all of the six benchmark datasets, and the standard
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deviations of DECNN is less than those of IPPSO on five datasets out of the six, so the overall
performance of DECNN is superior to IPPSO. The second crossover operator improves the
performance of DECNN because it performs a kind of local search between the two children
and their parents both in terms of the depth of CNN architectures and their parameters.

Table 4.2: Classification rates of DECNN and IPPSO
CONVEX MB MBI MDRBI MRB MRD

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

IPPSO(mean) 12.65 1.56 9.86 38.79 6.26 6.07

IPPSO(standard
deviation)

2.13 0.17 1.84 5.38 1.54 0.71

P-value 0.01 0.01 0.01 0.26 0.10 0.001

4.4.3 Evolved CNN Architectures

After examining the evolved CNN architectures, it is found that DECNN demonstrates its
capability of evolving the length of the architectures. When the evolutionary process starts,
the lengths of individuals are around 10; while the lengths of evolved CNN architectures
drop to 3 to 5 depending on the complexity of the datasets, which proves that DECNN has
the ability of effectively evolving CNN architectures of various lengths. Table 4.3 shows an
example of the evolved CNN architecture.

Table 4.3: An example of the evolved architectures on MB dataset
Layer type Configuration

convolutional Filter size: 2, Stride size: 1, feature maps: 23

convolutional Filter size: 4, Stride size: 2, feature maps: 49

full Neurons: 1583

full Neurons: 10

4.5 Conclusions

The goal of this part is to develop a novel DE-based algorithm to automatically evolve the
architecture of CNNs for image classification without any constraint of the depth of CNN
architectures. This has been accomplished by designing and developing the proposed hy-
brid differential evolution method. More specifically, three major contributions are made
by the proposed DECNN algorithm. First of all, the IP-Based Encoding Strategy has been
improved by removing the maximum length of the encoded vector and the unnecessary dis-
abled layer in order to achieve a real variable-length vector of any length; Secondly, the new
DE operations - mutation, crossover are developed, which can be applied to candidate vec-
tors of variable lengths; Last but not least, a novel second crossover is designed and added
to DE to produce children having different lengths from their parents. The second crossover
plays an important role to search the optimal depth of the CNN architectures because the
two children created through the second crossover have different length from their parents
- one is longer and the other is shorter, and during the selection from the two children and
the two parents, the candidate with a better fitness survives to the next generation, which
indicates that the length of the remaining candidate tends to be better than the other three.

The proposed DECNN has achieved encouraging performance. By comparing the per-
formance of DECNN with the 12 state-of-the-art competitors on the six benchmark datasets,
it can be observed that DECNN obtains a very competitive accuracy by ranking the first on
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the MBI and MRB datasets, the second and the third on the MRD and MDRBI datasets, re-
spectively, and the fifth on the MB and CONVEX datasets. In a further comparison with the
peer EC competitor, the best results are achieved by DECNN on five out of the six datasets.

However, it can be observed that there are still some room to improve the performance
in terms of the accuracy, especially on MB, CONVEX and MDRBI benchmark datasets as
there are a few peer competitors outperforming DECNN on these three datasets, so in the
final part of the project, more advanced CNN architectures are evolved to boost the accuracy
on these three datasets.
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Chapter 5

The Proposed Hybrid Two-level EC
Method

5.1 Introduction

DECNN proposed in Chapter 4 has achieved a promising results across all of the six bench-
mark datasets, but the performance is not ideal because it does not outperform all of the 12
peer competitors. Especially for the CONVEX benchmark dataset, four of nine peer competi-
tors obtain better accuracy than that of DECNN, which means there is still room to explore
to improve the performance of using EC methods to evolve CNN architectures.

In recent years, deep CNNs have achieved better and better accuracy on image classifica-
tion tasks, and the architectures of CNNs grow deeper and deeper, which on the other hand,
brings up the optimisation difficulty. Fortunately, additional connections added to connect
the current layer and the forward layers apart from the next layer have been discovered
and proved to be effective to conquer the optimisation difficulty, which therefore improves
the performance of the deep CNNs, e.g. ResNet [9] shown in Fig. 5.1 and DenseNet [10]
illustrated in Fig. 5.2. From the figures of ResNet and DenseNet, it can be seen that in
ResNet, along with the direct forward connections between the current layer and the next
layer, there are jump connections, which connect the current layer to the layer after the next
layer; in DenseNet, it divides the CNN architecture into a number of blocks, and each layer
is connected to all of the forward layers, which is called densely-connected structure. The
intuition behind the jump connections in ResNet and the densely-connected structure in
DenseNet is to pass the useful features learned from the current layer to the future layers.
However, the features learned from the current layer might not be useful, so it might intro-
duce some noises by passing them to the future layers. In this part of the project, instead
of just using the human-designed connections between the current layer and the forward
layers as shown in DenseNet and ResNet, a hybrid algorithm is proposed to evolve the
structure of the CNN which defines the layers of the CNN architecture, and also to decide
whether the connection exists between the current layer and the forward layers apart from
the next layer because the current layer is always connected to the next layer. This kind of
connection is called the shortcut connection. As shortcut connections of the evolved CNN
architectures may be densely-connected or sparsely-connected, the evolved CNN architec-
ture is called Dynamically-connected Network (DynamicNet).
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Figure 5.1: ResNet architecture [9]

Figure 5.2: DenseNet architecture [10]

Goals: The goal of this chapter is to propose a hybrid algorithm with two-level evolution
using GA and PSO (HGAPSO) to evolve more advanced and deeper CNN architectures
called DynamicNet in order to further improve the classification accuracy from the previous
EC methods. The proposed method will be examined and compared with 12 state-of-the-
art methods on three of the widely-used datasets having different levels of difficulties. The
specific objectives are

• Design and develop a new encoding strategy to encode the structures of CNNs and the
corresponding shortcut connections. The CNN structure is encoded into a vector with
decimal values, while the shortcut connections are encoded into a vector of binary
values, which will be specified in Section 5.2.2;

• Desing and develop the hybrid two-level evolution algorithm. Since the CNN struc-
ture carries the capacity of the model, which is decisive to the classification accuracy,
and the shortcut connections impact how well the CNN will be trained, it is reason-
able to evolve the CNN structure at the first-level of evolution, and evolve the shortcut
connections at the second-level based on the evolved CNN architecture. Based on the
types of values of the encoded vectors, PSO is chosen to evolve the CNN architectures
as the effectiveness of PSO optimising tasks with decimal values has been proven, and
GA is used to evolve the shortcut connections because GA works well on optimisation
tasks with binary values;

• Design and develop a new fitness evaluation method. As the individual vector repre-
senting a CNN need to be trained in order to obtain the fitness of the individual, and
the number of training epochs is crucial to the computational cost of the fitness eval-
uation, the number of epochs is fixed to a very small number, e.g. 5. An automation
method is developed to search for the best learning rate among a sequence of learn-
ing rates, which can achieve the best accuracy on DenseNet with the same number of
layers of the DynamicNet that needs to be evaluated.
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5.2 The Proposed Method

A hybrid algorithm with two-level evolution called HGAPSO is proposed here, and the de-
tails of the algorithms are illustrated in the following sub-sections. Firstly, the new CNN ar-
chitecture named DynamicNet, which will be evolved by the new algorithm, is introduced,
and the HGAPSO encoding strategy used to encode DynamicNet is designed as the rest of
the algorithm is dependent them; Secondly, the overview of the algorithm is given; Thirdly,
the first-level PSO evolution and the second-level GA evolution are described; Lastly, the
fitness evaluation is defined.

5.2.1 DynamicNet - The Evolved CNN Architecture

As in the proposed HGAPSO algorithm, both the CNN structure and the shortcut connec-
tions are evolved, the shortcut connections of the evolved CNN architectures are not fixed,
which might be densely-connected or sparsely-connected. This is why the CNN architecture
is named DynamicNet.

By comparing the figures of ResNet and DenseNet, it can be observed that in ResNet,
each layer has at most two connections from previous layers; however, in DenseNet, the
connections from previous layers are the number of previous layers due to the densely-
connected structure, so the number of input feature maps is the sum of the numbers of
feature maps of all previous layers, which results in the exploding growth of the number of
feature maps, particularly for the layers near the output layer. The solution introduced in
DenseNet is to divide the whole CNN into multiple blocks called Dense Block as depicted
in Fig. 5.2. After each block, a pair of a convolutional layer with the filter size of 3 × 3, the
stride size of 1 and the number of feature maps of half the number of input feature maps,
and a pooling layer with the kernel size of 2× 2 and the stride size of 2 is added to reduce the
number of feature maps to half of the number of input feature maps, and the pair is called
a transition layer. As the proposed DynamicNet may be densely-connected, it might have
the same exploding growth issue of the number of feature maps. Therefore, DynamicNet
adopts the block mechanism of DenseNet.

Inside each block, there are a number of convolutional layers with a fixed filter size of
3 × 3 and a fixed stride size of 1, and all of them have the same number of feature maps,
which is called the growth rate of the block because, after each layer, the total number of
input feature maps grows by the number of feature maps of the convolutional layer. In
DenseNet, the number of blocks, the number of convolutional layers and the growth rate are man-
ually designed, which requires good domain knowledge and a lot of manual trials to find
a good architecture. In the proposed HGAPSO algorithm, these three hyperparameters will
be automatically designed.

5.2.2 HGAPSO Encoding Strategy

DynamicNet is comprised of a number of blocks which are connected by transition layers,
and the shortcut connections are built between layers inside the block. Based on the con-
struction pattern of the network, the hyperparameters of the architecture can be split into
the structure and the shortcut connections. Regarding the structure of the network, there
are various hyperparameters including the number of blocks, the number of conv layers in
each block and the growth rate of the conv layer in the block, which need to be evolved.
In contrast to the densely-connected structure in DenseNet, different topologies of short-
cut connections both densely-connected or sparsely-connected structures, i.e. the different
combination of partial shortcut connections in each block, will be explored by the proposed
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HGAPSO in order to keep the meaningful features and remove the unmeaningful features
learned by previous layers.

Based on the analysis of the architecture and hyperparameters, the encoding process
can be divided into two steps. The first step is to encode the hyperparameters of the CNN
structure. Each of the hyperparameters is a dimension of the structure encoding, which is
shown in Fig. 5.3. The first dimension is the number of blocks, and the two hyperparameters
of each block - the number of convolutional layers and the growth rate, as two dimensions
are appended to the vector. The first step of the encoding is named the first-level encoding,
which will be used by the first-level evolution . Secondly, based on the result of the first-
level encoding representing a CNN structure, the shortcut connections can be encoded into
a binary vector illustrated in Fig. 5.4, which is named as the second-level encoding. Fig. 5.4
shows an example of one block with 5 layers. Each of the dimension represents a shortcut
connection between two layers that are not next to each other, and the two layers next to
each other are always connected. Taking the first layer as an example, the three binary
digits - [101] represents the shortcut connections between the first layer to the third, fourth
and fifth layer, respectively, where 1 means the connection exists; while 0 means there is
no connection. A number of similar binary vectors drawn in Fig. 5.4 constitute one whole
vector that represents the shortcut connections of the whole block.

Figure 5.3: HGAPSO first-level encoding

Figure 5.4: HGAPSO second-level encoding

5.2.3 HGAPSO Algorithm Overview

Based on the two-level encoding strategy, the algorithm is composed of two levels of evolu-
tion described in Algorithm 9. The first-level evolution is designed to evolve the structure of
the CNNs encoded by the first-level encoding, and the second-level evolution is performed
to search for the best combination of shortcut connections. There are a couple of reasons
to separate the structure evolution from the evolution of the shortcut-connection combina-
tion. First of all, since the structure and the shortcut connections play different roles in the
architectures of CNNs, which are that the structure including the depth and the width of
the CNNs represents the capacity of network and the shortcut connections are able to facil-
itate the training process of the network, the training process is only comparable when the
structure is fixed, which inspires the idea of splitting the evolution to two levels. Secondly,
as shown in the above algorithms, there are quite a few types of parameters combined into
the encoded vector, which brings some uncertainties to the search space, it may deteriorate
the complex search space by introducing more disturbance to the search space.
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It is arguable that the computational cost of the two-level evolution may be high, but the
two-level encoding strategy divides the complex search space to two smaller search space
and it also reduces the disturbance in the search space, so the two-level evolution we believe
will not perform worse than searching for the optima in a much more complex search space.
Other than that, as the second-level evolution of searching for the best combination of short-
cut connections only depends on the specific structure evolved in the first-level evolution,
the second-level evolution can be done in parallel for each of the individual of the first-level
evolution, which can dramatically speed up the process if sufficient hardware is available.

Algorithm 9: Framework of HGAPSO
P← Initialize the population with first-level encoding elaborated in Section 5.2.2;
Pbest ← EmptyPSOPersonalBest;
Gbest ← EmptyPSOglobalbest;
while first-level termination criterion is not satisfied do

P← Update the population with first-level PSO evolution described in Section 5.2.4;
for particle ind in population P do

P sub← Initialize the population with second-level encoding based on the value of
ind illustrated in Section 5.2.2;
while second-level termination criterion is not satisfied do

P sub← Update the population with second-level GA evolution described in
Section 5.2.5;
evaluate the fitness value of each individual;
P subbest ← retrieve the best individual in P sub;

end while
Update Pbest if P subbest is better than Pbest;

end for
Gbest ← retrieve the best individual in P;

end while

5.2.4 HGAPSO First-level PSO evolution

Algorithm 10 shows the pseudo code for the PSO evolution, which briefly describes the
evolution process. Based on the encoded vector from the first-level encoding, the value of
each dimension is a decimal value, and PSO is proved to be effective and efficient to solve
the optimisation problem with decimal values, so PSO is chosen as the first-level evolution
algorithm. However, the dimensionality of the encoded vector is not fixed, so an adapted
variable-length PSO is proposed to solve this variable-length problem. Since the size of the
input feature maps to each block is different and the specific block is trained and designed
to learn meaningful features given the size of the input feature maps, when applying EC
operators on two individuals, it is important to find the match blocks which have the same
size of input feature maps and apply the operators on the matched blocks. To be specific
with the PSO evolution in HGAPSO, the length of the particle may be different from the
length of the personal best and global best, so based on the blocks of the individual, the cor-
responding blocks in the personal best and the global best need to be matched by selecting
the blocks with the same size of the output feature and the PSO algorithm is only applied
on the matched blocks

The first dimension of the vector represents the number of blocks. When the number
of blocks changes, the depth of the CNN architectures changes, which obtains the ability of
evolving the depth of the CNN architecture and keep the diversity of the individuals; how-
ever, the change of the number of blocks incurs a dramatic change to the CNN architecture,
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and if it changes too often, the CNN architecture will be disturbed over and over, which
should be avoided, so it is better to leave the evolution algorithm some time to search for
the other hyperparameters given the specific number of blocks. In order to keep the diver-
sity of the number of blocks and reduce the disturbance caused by frequently changing the
number of blocks, the rate of changing the number of blocks in the vector is introduced,
which is a real value between 0 to 1. Therefore, the preference for diversity or stability de-
pending on specific tasks can be controlled by tweaking the rate of changing the number of
locks.

When the number of blocks is changed, some blocks need to randomly cut or randomly
generated in order to meet the requirement of the number of blocks in the first dimension.
For example, suppose the number of blocks is increased from 3 to 4, the hyperparameters
of the fourth block need to be randomly generated based on the first-level encoding strat-
egy, which then are appended to the vector of 3 blocks; In the other way around, assume
the number of blocks is decreased from 4 to 3, the last block is removed. In the proposed
HGAPSO, whenever removing blocks, it always starts from the last layer because it does
not affect the feature map sizes of the other blocks.

Algorithm 10: HGAPSO first-level PSO evolution
Input: The current particle ind, the personal best Pbest, the global best Gbest, the rate of

changing the number of blocks rcb;
rnd← Generate a random number from a uniform distribution
Find the matched blocks of the particle ind by comparing the feature map size;
Update the velocity and position of the matched blocks of the particle ind according to
Equation 2.5 and 2.6;
if rnd < rcb then

Update the velocity and position of the dimension of number of blocks of the particle
ind according to Equation 2.5 and 2.6;
Randomly cut or generate the blocks to the value of the number of blocks

end if

5.2.5 HGAPSO Second-level GA evolution

According to the second-level encoding depicted in Section 5.2.2, once the particle is ob-
tained from the first-level evolution, the dimensionality of the second-level encoding will
be fixed, so the encoded vector can be represented by a fixed-length binary vector. Since
GA is an efficient algorithm to optimise the problems that can be encoded into binary vec-
tors, GA is chosen as the algorithm to perform the second-level evolution, which becomes a
standard GA problem.

5.2.6 HGAPSO Fitness Evaluation

The fitness evaluation is done by using backpropagation with Adam Optimiser [17] to train
the network for a number of epochs on the training part of the training data and then ob-
taining an accuracy of the trained network used as the fitness value on the test part of the
training data. It can be observed that there are two hyperparameters for the fitness evalua-
tion, which are the number of epochs and the initial learning rate of Adam Optimiser. In our
experiment, 5 epochs are fixed by considering our hardware and a fairly-short experimental
time. After the number of epochs is chosen, DenseNet is used as a benchmark to determine
an initial learning rate for optimising a CNN with the given depth and width, i.e. after the
structure of the CNN obtained, the network with fully-connected blocks as shown in Fig.
5.2 are used to find a best initial learning rate among 0.9, 0.1 and 0.01.
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In order to speed up the evolution process, a partial dataset is used for the second-level
evolution because the second-level evolution consume most the computation; while for the
first-level evolution, as the computational cost is not that high, and in order to achieve a
more stable performance given the structure of a CNN, the full dataset is used to achieve
the fitness value of the individuals of the first-level evolution.

5.3 Experiment Design

5.3.1 Benchmark Datasets and State-of-the-art Competitors

In order to perform a fair comparison between the proposed hybrid two-level EC method
and the other algorithms proposed in the first two parts of this project, the same bench-
mark datasets and the same peer competitors are utilised, which are described in Section
3.3.1 and 3.3.2, respectively. However, due to the computational cost and the time constraint
of the final part of this project, only MB, MDRBI and CONVEX datasets are chosen to test
the proposed algorithm because the EC algorithms developed in the first two parts of this
project does not perform very well on CONVEX dataset by comparing to the other bench-
mark datasets, and the simplest variant and the most difficult variant of MNIST dataset are
chosen in order to evaluate proposed HGAPSO with different datasets in various difficul-
ties.

As it would be more convincing to evaluate the proposed EC algorithms on larger datasets
such as CIFAR-10, but the computational cost is too high, e.g. one run of IPPSO on CIFAR-10
takes more than a week, which makes it not feasible to test all of the algorithms on CIFAR-
10, it is more reasonable to choose the best proposed algorithm to be tested on CIFAR-10.
The proposed HGAPSO method is expected to be the best, so if HGAPSO outperforms the
other proposed EC algorithms on the six smaller datasets, a further experiments of running
HGAPSO on CIFAR-10 will be performed. However, the experiment will not be ran by 30
times due to the very high computational cost, our limited GPU resource and the time con-
straint of the project. Instead, only one run of the experiment will be performed in order
to obtain an initial result, which can be used to decide whether it is worth continuing the
experiments for 30 runs in the future when more GPU resources are ready.

5.3.2 Parameter settings of the proposed EC methods

All of the parameters are configured according to the conventions in the communities of PSO
[39] and GAs [6] along with taking into account the computational cost and the complexity
of the search space. The values of the parameters of the proposed algorithms are listed in
Table 5.1.

Table 5.1: Parameter list
Parameter Value

PSO

acceleration coefficient array for Pid 1.49618

acceleration coefficient array for Pgd 1.49618

inertia weight for updating velocity 0.7298

GA

mutation rate 0.01

cross over rate 0.9

elitism rate 0.1

HGAPSO parameters

the range of # of layers in each block [4, 8]

the range of growth rate in each block [8, 32]

population size 20

generation 10
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5.4 Results and Discussions

Since the proposed EC method is stochastic as the other algorithms proposed in this project,
statistical significance test is required to make the comparison result more convincing. When
comparing the proposed HGAPSO with the state-of-the-art methods, One Sample T-Test is
applied to test whether the results of HGAPSO is better; when the comparison of error rates
between HGAPSO and the proposed DECNN is performed, Two Sample T-test is utilised to
determine whether the difference is statistically significant or not. Table 5.2 shows the com-
parison results between the proposed HGAPSO and the state-of-the-art algorithms; Table
5.3 compares HGAPSO with DECNN.

5.4.1 HGAPSO vs. State-of-the-Art methods

The experimental results and the comparison between the proposed HGAPSO and the state-
of-the-art methods are shown in Table 5.2. In order to clearly show the comparison results,
the terms (+) and (-) are provided to indicate the result of HGAPSO is better or worse than
the best result obtained by the corresponding peer competitor; The term (=) shows that
the mean error rate of HGAPSO are slightly better or worse than the competitor, but the
difference is not significant from the statistical point of view; The term – means there are no
available results reported from the provider or cannot be counted.

It can be observed that the proposed HGAPSO method achieves a significant improve-
ment in terms of the error rates shown in Table 5.2. HGAPSO significantly outperforms the
other peer competitors across all three benchmark datasets. To be specific it reduces the er-
ror rate of the best competitor by 5%, 1% and 10% on CONVEX, MB and MDRBI datasets,
respectively.

Table 5.2: The classification errors of HGAPSO against the peer competitors
classier CONVEX MB MDRBI

CAE-2 – 2.48 (+) 45.23 (+)

TIRBM – – 35.50 (+)

PGBM+DN-1 – – 36.76

ScatNet-2 6.50 (+) 1.27 (+) 50.48 (+)

RandNet-2 5.45 (+) 1.25 (+) 43.69 (+)

PCANet-2 (softmax) 4.19 (+) 1.40 (+) 35.86 (+)

LDANet-2 7.22 (+) 1.05 (+) 38.54 (+)

SVM+RBF 19.13 (+) 30.03 (+) 55.18 (+)

SVM+Poly 19.82 (+) 3.69 (+) 54.41 (+)

NNet 32.25 (+) 4.69 (+) 62.16 (+)

SAA-3 18.41 (+) 3.46 (+) 51.93 (+)

DBN-3 18.63 (+) 3.11 (+) 47.39 (+)

HGAPSO(best) 1.03 0.74 10.53

HGAPSO(mean) 1.24 0.84 12.23

HGAPSO(standard
deviation)

0.10 0.07 0.86

5.4.2 HGAPSO vs. DECNN

Since DECNN achieves better performance than the EC algorithms developed in the first
part, DECNN is chosen as the peer EC competitor. In Table 5.3, it can be observed that by
comparing the results between HGAPSO and DECNN, both the mean error rate and the
standard deviation of HGAPSO are smaller than those of DECNN, and from the statistical
point of view, HGAPSO has a significant improvement in terms of the classification accu-
racy.
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Table 5.3: Classification rates of HGAPSO and DECNN
CONVEX MB MDRBI

HGAPSO(mean) 1.24 0.84 12.23

HGAPSO(standard
deviation)

0.10 0.07 0.86

DECNN(mean) 11.19 1.46 37.55

DECNN(standard
deviation)

1.94 0.11 2.45

P-value 0.0001 0.0001 0.0001

5.4.3 Evolved CNN Architecture

After investigating the evolved CNN architectures, it is found that HGAPSO demonstrates
its capability of evolving both the structure of CNNs and the shortcut connections between
layers. By looking into the evolved CNN architectures, it can be observed that not only the
CNN architectures with various number of layers but also different topologies of shortcut
connections are evolved. Here is an example of the evolved CNN architecture with 3 blocks.
In the first block, there are 4 conv layers, and [0, 0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1], [0, 0] and
[1] represent the connections from the input, the first layer, the second layer, the third layer
to the following layers, where 1 indicates the connection exists, and 0 means no connection;
The second block is composed of 8 layers with the growth rate of 34, and the corresponding
connections are [1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1], [1, 0,
0, 0], [0, 0, 0], [1, 1] and [0]; In the third block, there are 5 layers with the corresponding
connections of [0, 0, 1, 1, 0], [0, 0, 0, 0], [1, 0, 0], [0, 1] and [0], and the growth rate is 39.

5.4.4 Initial result on CIFAR-10 dataset

As mentioned earlier, the computational cost of testing HGAPSO is extremely high. For one
run of the experiment using one GPU card, it takes more than a week to evolve the CNN
architecture, and it spend almost 12 hours to trained the evolved CNN architecture. The
classification accuracy of the specific run is 90.08%, which ranks in the middle of the state-
of-the-art deep neural networks ranging from 75.86% to 96.53% that are collected by the
rodrigob website 1; However, all of the state-of-the-art deep neural networks require very
high specialised domain knowledge and tremendous experiments to manually fine-tune the
performance, while HGAPSO has the ability of automatically evolving the CNN architecture
without any human interference, which is considered as the biggest advantage.

5.5 Conclusions

It can be concluded that the hybrid two-level EC method outperforms the other proposed al-
gorithms from the first two parts of the project by evolving the more advanced architectures
of CNNs instead of the traditional CNN architectures mainly because of two reasons. The
first reason is that by introducing shortcut connections, the feature maps learned in previ-
ous layers can be reused in further layers, which amplifies the leverage of useful knowledge;
Secondly, the shortcut connections makes the training of very deep neural networks more
effectively by passing the gradients through shortcut connections, which has been proven
by DenseNet [10].

The classification accuracy of HGAPSO on CIFAR-10 is really promising as it is very
competitive with the state-of-the-art deep neural networks. In addition, the most advantage

1http://rodrigob.github.io/are we there yet/build/classification datasets results.html#43494641522d3130
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of HGAPSO is that it does not require any human efforts to design the architecture of CNNs,
which is usually required for the peer state-of-the-art competitors.
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Chapter 6

Conclusions and Future Work

6.1 Major Conclusions

The main objectives of this whole project comprised of three parts have been successfully
accomplished, which provides the automatic methods to design CNN architectures with
competitive or even better performance than the state-of-the-art algorithms. In the first part,
the proposed DE and GA methods using the IP-Based encoding strategy have been devel-
oped, and it has proven its competitiveness with the state-of-the-art methods. The IP-Based
encoding strategy has shown its flexibility and powerfulness of encoding very complex pa-
rameters with various number of parameters and arbitrary ranges of values into a search
space with a fixed length, which makes it straightforward to apply EC algorithms on these
tasks; In the second part, a new DE algorithm which can be applied on vectors with various
length is designed and implemented, and a second crossover is introduced to enhance the
variety of the population in terms of the vector length, which grants the ability of evolving
the length along with the value of the vector on the proposed algorithm. As a result, the
proposed hybrid DE algorithm is able to evolve CNN architectures without any constraints
of depths, and the performance has been improved comparing the proposed algorithms in
the first part. In the last part of this project, more advanced and recent CNN architectures
with shortcut connections are evolved by the proposed hybrid two-level algorithm, which
have achieved a significant improvement in terms of the classification accuracy comparing
the other proposed algorithms in this project.

6.2 Future Work

In regard to the future work, there are two aspects coming up from the experiments and
learnt experience of this project. Firstly, due to the hardware limitation, all of the proposed
algorithms are tested on relatively small datasets. Even though an initial result of running
HGAPSO on CIFAR-10 is achieved, the statistical analysis based on the results from 30 runs
needs to be applied in order to make a stronger claim of the proposed HGAPSO. It would be
more convincing if the algorithms could be tested on other larger datasets such as ImageNet
dataset. Fortunately, more hardware is setting up in our lab, which makes it feasible to
do more researches on larger datasets. Secondly, as the CNN architectures with shortcut
connections shows dramatical improvement, it would be helpful to investigate more recent
CNN architectures and then apply EC methods on searching for a good solution among
different types of recent CNN architectures.
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Appendix A

IP-Based EC algorithms

A.1 IP-Based Random Search

A fixed step size random search (FSSRS) [28] is implemented as it is an easy and effective
random search algorithm. In order to make a fair comparison with other IPEC methods,
instead of using one candidate to perform the random search task, a population of numerous
candidates is used to complete the search process. As the IP-Based Encoding Strategy is used
to encode the architecture of CNNs into 8-byte vectors which constitute the search space, the
objective of the IP-Based Random Search (IPRS) method is to optimise the accuracy in the
constructed search space.

A.1.1 IPRS Algorithm Overview

The framework of IPRS is mainly comprised of four key steps - initialise the population,
update the position of each candidate of the population, retrieve the best candidate in the
whole population, and repeat step 2 and 3 until the stop criteria are met. More details are
depicted in the pseudo-code in Algorithm 11.

Algorithm 11: Framework of IPRS
P← Initialize the population with IP-Based Encoding Strategy elaborated in Section
3.2.3;
P best← empty;
while termination criterion is not satisfied do

update the position of each candidate solution as shown in Algorithm 12;
evaluate the fitness value of each candidate;
P best← find the best candidate in the population;

end while

A.1.2 IPRS Position Update

The candidate contains a series of interfaces each of which represents a CNN layer, and each
interface carries a 2-byte IP address, so in order to update the position of the candidate, the
IP addresses in the candidate need to be flattened into an integer vector which is composed
of 1-byte integers, and each byte is one dimension of the position of random search. When
randomly searching the space, a random point on the hypersphere with a certain radius and
the current point as the origin is selected as the new position. Instead of directly moving to
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the new position, the candidate only moves to the new position if the fitness value of the
new position is better.

Algorithm 12: Update The Position of A Candidate Solution
Input: candidate vector c vector, radius for random search r;
Output: updated candidate vector c vector;

bytes vector ← extract each byte of the IP addresses from the interfaces of the candidate
c vector in order;
sphere vector ← randomly generate a vector with the radius r and the size of bytes vector
as the dimension
i← 0;
for i < the size of bytes vector do

bytes vector[i]← bytes vector[i] + sphere vector[i];
if bytes vector[i] > 255 then

bytes vector[i]← bytes vector[i]− 255
end if
i← i + 1;

end for
new c vector ← convert bytes vector to a new candidate vector by generating IP
addresses from bytes vector which then are stored as interfaces in the new candidate
vector
new f itness← evaluate the new candidate vector new c vector;
if new f itness > the fitness of c vector then

c vector ← new c vector
end if
return c vector

A.2 Experiments to fine-tune the hyperparameters of fitness eval-
uation

One hyperparameter of the fitness evaluation is the percentage of the dataset, which can dra-
matically affect the final results of the proposed methods. If the percentage of the dataset
is too small, the partial dataset cannot represent the characteristics of the whole training
dataset very well, so the final accuracy won’t meet our expectation; however, the computa-
tional cost explodes along with the increase of the percentage, which indicates that using the
whole training dataset for the fitness evaluation is not ideal. It can be observed that there is
a conflict between achieving the best accuracy and the fast convergence, which need to be
reconciled by fine-tuning the percentage of the dataset used for the fitness evaluation. To be
specific with the experiments, IPDE with 40% and 70% given 5 epochs will be run on the six
benchmark datasets, and the results will be compared with IPDE with 10% and the whole
training dataset that are done in the experiments in Section 3.3.3.

The other hyperparameter is the number of epochs, which also influences the perfor-
mance of the IPEC methods. If the number of epochs is not sufficient to train a good CNN
architecture, the trend of the CNN architecture cannot be learned, which will produce some
noises of the fitness value; however, if the number of epochs is too large, overfitting may oc-
cur, which results in noises of the fitness value as well because the accuracy obtained from
the fitness evaluation is not able to represent the true accuracy of the CNN architecture on
the specific dataset. As a result, the percentage of the dataset is fixed to 10% in order to
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attain the results in a short period without severely comprising the accuracy, and IPDE with
various numbers of epochs - 10 and 15 will be done, whose results will be investigated to
learn a pattern of how the number of epochs impact the final accuracy of the learned CNN
architecture.

A.3 Results and Discussions of Tuning Fitness Evaluation Hyper-
parameters

A.3.1 Performance Comparison by tuning the percentage of dataset for fitness
evaluation

The results of the mean error rates, standard deviations and best error rates are reported in
Table A.1. Even though there are no significant differences between any two of IPDE-10%-5,
IPDE-40%-5, IPDE-70%-5 and IPDE-100%-5 by performing Two Sample T-Test on the results,
there is still an implicit trend on the mean error rate along with the increase of the percentage
of the dataset used. As shown in Fig. A.3.1, for the MBI, MDRBI and MRB benchmark
datasets, the mean error rate continuously plunges when the percentage of dataset goes up;
while, for the CONVEX, MB AND MRD datasets, the mean error rate fluctuates during the
increase of the percentage. As the CNNs are trained on partial datasets, the more data are
used the more accurate it can represent the distribution of the dataset, which is supposed
to produce a better accuracy, and it is perfectly matched by the MBI, MDRBI and MRB
benchmark datasets; while, for the other three datasets, the error rate doesn’t have a clear
trend of rising or falling, and it slightly goes up and down. Since the CONVEX, MB AND
MRD datasets are relatively simple compared to the other three, 10% dataset may be able to
represent the correct distribution of the whole dataset, so it achieves similar error rates with
a bit fluctuation during the increase of the percentage of datasets.

Table A.1: The classification errors of IPDE by tuning the percentage of data used for fitness
evaluation

percentage CONVEX MB MBI MDRBI MRB MRD

Best Error Rate of State of Art method

4.19 1.05 11.55 35.50 6.08 4.45

Mean Error Rate

10% 11.65 1.47 10.30 39.33 5.89 5.81

40% 12.58 1.57 8.57 36.75 5.43 5.82

70% 12.85 1.56 7.92 32.95 5.28 5.77

100% 11.62 1.57 7.54 32.07 4.88 5.91

Standard Deviation

10% 1.94 0.15 1.58 5.87 1.97 1.17

40% 2.32 0.25 1.61 6.13 1.72 0.88

70% 3.45 0.21 1.22 2.29 1.06 0.95

100% 3.87 0.18 1.03 2.65 0.69 1.34

Best Error Rate

10% 8.56 1.16 6.63 32.20 3.88 3.84

40% 7.54 1.26 5.88 26.38 3.22 4.98

70% 7.70 1.31 5.50 27.02 3.09 4.35

100% 7.25 1.23 5.45 26.83 3.54 4.45

A.3.2 Performance Comparison by tuning the training epochs for fitness evalu-
ation

Along with the growth of epochs by fixing the percentage of the dataset, the performance
of the trained CNN climbs, which can reflect the correct trend of the corresponding fully-
trained CNN better, but when the epochs exceeds some point, the performance of the trained
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Figure A.1: The trend of the mean error rate along with increasing the percentage of dataset

CNN plunges due to over-fitting, so it can not reflect the trend of the fully-trained CNN any-
more, which adds noises to the fitness value. This assumption is supported by the changes in
the mean error rates of different datasets. For the CONVEX, MB, MRD benchmark datasets,
the CNN trained for 5 epochs are enough or more than enough to represent the fully-trained
CNN, so the mean error rate for the CONVEX dataset rockets from 5 epoch to 10 epochs, for
the MB dataset, the error rate keeps rising, and for the MRD dataset, the error rate receives
a little increase from 5 epochs to 10 epochs and jumps sharply from 10 epochs to 15 epochs.
With regard to the MBI, MDRBI datasets with more complexity, the mean error rate drops
with the growth of the epoch number. The mean error rate of the MRB datasets reduces
while epochs changes from 5 to 10, and it hikes during the change of epochs from 10 to 15,
which indicates that 10 epochs could be the point where the trained CNN could represent
the fully-trained CNN best.

Table A.2: The classification errors of IPDE by tuning the epochs for fitness evaluation
epochs CONVEX MB MBI MDRBI MRB MRD

Best Error Rate of State of Art method

4.19 1.05 11.55 35.50 6.08 4.45

Mean Error Rate

5 11.65 1.47 10.30 39.33 5.89 5.81

10 12.58 1.49 9.46 37.50 5.53 5.82

15 12.47 1.54 9.31 37.20 5.88 6.44

Standard Deviation

5 1.94 0.15 1.58 5.87 1.97 1.17

10 1.65 0.31 2.07 5.01 1.31 0.94

15 2.27 0.42 2.00 6.20 1.52 1.94

Best Error Rate

5 8.56 1.16 6.63 32.20 3.88 3.84

10 9.03 1.00 6.49 30.30 3.54 4.41

15 9.14 1.13 5.16 29.63 4.07 4.75
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